yuzu-early/externals/libressl/crypto/bio/bss_dgram.c
2020-12-28 15:15:37 +00:00

659 lines
15 KiB
C
Executable File

/* $OpenBSD: bss_dgram.c,v 1.42 2018/05/12 17:47:53 tb Exp $ */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <openssl/opensslconf.h>
#include <openssl/bio.h>
#ifndef OPENSSL_NO_DGRAM
static int dgram_write(BIO *h, const char *buf, int num);
static int dgram_read(BIO *h, char *buf, int size);
static int dgram_puts(BIO *h, const char *str);
static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_new(BIO *h);
static int dgram_free(BIO *data);
static int dgram_clear(BIO *bio);
static int BIO_dgram_should_retry(int s);
static const BIO_METHOD methods_dgramp = {
.type = BIO_TYPE_DGRAM,
.name = "datagram socket",
.bwrite = dgram_write,
.bread = dgram_read,
.bputs = dgram_puts,
.ctrl = dgram_ctrl,
.create = dgram_new,
.destroy = dgram_free
};
typedef struct bio_dgram_data_st {
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
struct sockaddr_in6 sa_in6;
} peer;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
struct timeval next_timeout;
struct timeval socket_timeout;
} bio_dgram_data;
const BIO_METHOD *
BIO_s_datagram(void)
{
return (&methods_dgramp);
}
BIO *
BIO_new_dgram(int fd, int close_flag)
{
BIO *ret;
ret = BIO_new(BIO_s_datagram());
if (ret == NULL)
return (NULL);
BIO_set_fd(ret, fd, close_flag);
return (ret);
}
static int
dgram_new(BIO *bi)
{
bio_dgram_data *data = NULL;
bi->init = 0;
bi->num = 0;
data = calloc(1, sizeof(bio_dgram_data));
if (data == NULL)
return 0;
bi->ptr = data;
bi->flags = 0;
return (1);
}
static int
dgram_free(BIO *a)
{
bio_dgram_data *data;
if (a == NULL)
return (0);
if (!dgram_clear(a))
return 0;
data = (bio_dgram_data *)a->ptr;
free(data);
return (1);
}
static int
dgram_clear(BIO *a)
{
if (a == NULL)
return (0);
if (a->shutdown) {
if (a->init) {
shutdown(a->num, SHUT_RDWR);
close(a->num);
}
a->init = 0;
a->flags = 0;
}
return (1);
}
static void
dgram_adjust_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
struct timeval timenow, timeleft;
/* Read current socket timeout */
socklen_t sz = sizeof(data->socket_timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
&(data->socket_timeout), &sz) < 0) {
perror("getsockopt");
}
/* Get current time */
gettimeofday(&timenow, NULL);
/* Calculate time left until timer expires */
memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
timeleft.tv_sec -= timenow.tv_sec;
timeleft.tv_usec -= timenow.tv_usec;
if (timeleft.tv_usec < 0) {
timeleft.tv_sec--;
timeleft.tv_usec += 1000000;
}
if (timeleft.tv_sec < 0) {
timeleft.tv_sec = 0;
timeleft.tv_usec = 1;
}
/* Adjust socket timeout if next handhake message timer
* will expire earlier.
*/
if ((data->socket_timeout.tv_sec == 0 &&
data->socket_timeout.tv_usec == 0) ||
(data->socket_timeout.tv_sec > timeleft.tv_sec) ||
(data->socket_timeout.tv_sec == timeleft.tv_sec &&
data->socket_timeout.tv_usec >= timeleft.tv_usec)) {
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
&timeleft, sizeof(struct timeval)) < 0) {
perror("setsockopt");
}
}
}
#endif
}
static void
dgram_reset_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
&(data->socket_timeout), sizeof(struct timeval)) < 0) {
perror("setsockopt");
}
}
#endif
}
static int
dgram_read(BIO *b, char *out, int outl)
{
int ret = 0;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
struct {
socklen_t len;
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
struct sockaddr_in6 sa_in6;
} peer;
} sa;
sa.len = sizeof(sa.peer);
if (out != NULL) {
errno = 0;
memset(&sa.peer, 0, sizeof(sa.peer));
dgram_adjust_rcv_timeout(b);
ret = recvfrom(b->num, out, outl, 0, &sa.peer.sa, &sa.len);
if (! data->connected && ret >= 0)
BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
BIO_clear_retry_flags(b);
if (ret < 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_read(b);
data->_errno = errno;
}
}
dgram_reset_rcv_timeout(b);
}
return (ret);
}
static int
dgram_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
errno = 0;
if (data->connected)
ret = write(b->num, in, inl);
else {
int peerlen = sizeof(data->peer);
if (data->peer.sa.sa_family == AF_INET)
peerlen = sizeof(data->peer.sa_in);
else if (data->peer.sa.sa_family == AF_INET6)
peerlen = sizeof(data->peer.sa_in6);
ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
}
BIO_clear_retry_flags(b);
if (ret <= 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_write(b);
data->_errno = errno;
/*
* higher layers are responsible for querying MTU,
* if necessary
*/
}
}
return (ret);
}
static long
dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret = 1;
int *ip;
struct sockaddr *to = NULL;
bio_dgram_data *data = NULL;
#if (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
int sockopt_val = 0;
socklen_t sockopt_len; /* assume that system supporting IP_MTU is
* modern enough to define socklen_t */
socklen_t addr_len;
union {
struct sockaddr sa;
struct sockaddr_in s4;
struct sockaddr_in6 s6;
} addr;
#endif
data = (bio_dgram_data *)b->ptr;
switch (cmd) {
case BIO_CTRL_RESET:
num = 0;
case BIO_C_FILE_SEEK:
ret = 0;
break;
case BIO_C_FILE_TELL:
case BIO_CTRL_INFO:
ret = 0;
break;
case BIO_C_SET_FD:
dgram_clear(b);
b->num= *((int *)ptr);
b->shutdown = (int)num;
b->init = 1;
break;
case BIO_C_GET_FD:
if (b->init) {
ip = (int *)ptr;
if (ip != NULL)
*ip = b->num;
ret = b->num;
} else
ret = -1;
break;
case BIO_CTRL_GET_CLOSE:
ret = b->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
b->shutdown = (int)num;
break;
case BIO_CTRL_PENDING:
case BIO_CTRL_WPENDING:
ret = 0;
break;
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret = 1;
break;
case BIO_CTRL_DGRAM_CONNECT:
to = (struct sockaddr *)ptr;
switch (to->sa_family) {
case AF_INET:
memcpy(&data->peer, to, sizeof(data->peer.sa_in));
break;
case AF_INET6:
memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
break;
default:
memcpy(&data->peer, to, sizeof(data->peer.sa));
break;
}
break;
/* (Linux)kernel sets DF bit on outgoing IP packets */
case BIO_CTRL_DGRAM_MTU_DISCOVER:
#if defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
switch (addr.sa.sa_family) {
case AF_INET:
sockopt_val = IP_PMTUDISC_DO;
ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val));
if (ret < 0)
perror("setsockopt");
break;
#if defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
case AF_INET6:
sockopt_val = IPV6_PMTUDISC_DO;
ret = setsockopt(b->num, IPPROTO_IPV6,
IPV6_MTU_DISCOVER, &sockopt_val,
sizeof(sockopt_val));
if (ret < 0)
perror("setsockopt");
break;
#endif
default:
ret = -1;
break;
}
#else
ret = -1;
#endif
break;
case BIO_CTRL_DGRAM_QUERY_MTU:
#if defined(IP_MTU)
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family) {
case AF_INET:
ret = getsockopt(b->num, IPPROTO_IP, IP_MTU,
&sockopt_val, &sockopt_len);
if (ret < 0 || sockopt_val < 0) {
ret = 0;
} else {
/* we assume that the transport protocol is UDP and no
* IP options are used.
*/
data->mtu = sockopt_val - 8 - 20;
ret = data->mtu;
}
break;
#if defined(IPV6_MTU)
case AF_INET6:
ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
&sockopt_val, &sockopt_len);
if (ret < 0 || sockopt_val < 0) {
ret = 0;
} else {
/* we assume that the transport protocol is UDP and no
* IPV6 options are used.
*/
data->mtu = sockopt_val - 8 - 40;
ret = data->mtu;
}
break;
#endif
default:
ret = 0;
break;
}
#else
ret = 0;
#endif
break;
case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
switch (data->peer.sa.sa_family) {
case AF_INET:
ret = 576 - 20 - 8;
break;
case AF_INET6:
#ifdef IN6_IS_ADDR_V4MAPPED
if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
ret = 576 - 20 - 8;
else
#endif
ret = 1280 - 40 - 8;
break;
default:
ret = 576 - 20 - 8;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU:
return data->mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
data->mtu = num;
ret = num;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
to = (struct sockaddr *)ptr;
if (to != NULL) {
data->connected = 1;
switch (to->sa_family) {
case AF_INET:
memcpy(&data->peer, to, sizeof(data->peer.sa_in));
break;
case AF_INET6:
memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
break;
default:
memcpy(&data->peer, to, sizeof(data->peer.sa));
break;
}
} else {
data->connected = 0;
memset(&(data->peer), 0, sizeof(data->peer));
}
break;
case BIO_CTRL_DGRAM_GET_PEER:
switch (data->peer.sa.sa_family) {
case AF_INET:
ret = sizeof(data->peer.sa_in);
break;
case AF_INET6:
ret = sizeof(data->peer.sa_in6);
break;
default:
ret = sizeof(data->peer.sa);
break;
}
if (num == 0 || num > ret)
num = ret;
memcpy(ptr, &data->peer, (ret = num));
break;
case BIO_CTRL_DGRAM_SET_PEER:
to = (struct sockaddr *) ptr;
switch (to->sa_family) {
case AF_INET:
memcpy(&data->peer, to, sizeof(data->peer.sa_in));
break;
case AF_INET6:
memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
break;
default:
memcpy(&data->peer, to, sizeof(data->peer.sa));
break;
}
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
break;
#if defined(SO_RCVTIMEO)
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
sizeof(struct timeval)) < 0) {
perror("setsockopt");
ret = -1;
}
break;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
{
socklen_t sz = sizeof(struct timeval);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
ptr, &sz) < 0) {
perror("getsockopt");
ret = -1;
} else
ret = sz;
}
break;
#endif
#if defined(SO_SNDTIMEO)
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
sizeof(struct timeval)) < 0) {
perror("setsockopt");
ret = -1;
}
break;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
{
socklen_t sz = sizeof(struct timeval);
if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
ptr, &sz) < 0) {
perror("getsockopt");
ret = -1;
} else
ret = sz;
}
break;
#endif
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
/* fall-through */
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
if (data->_errno == EAGAIN) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
#ifdef EMSGSIZE
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
if (data->_errno == EMSGSIZE) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
#endif
default:
ret = 0;
break;
}
return (ret);
}
static int
dgram_puts(BIO *bp, const char *str)
{
int n, ret;
n = strlen(str);
ret = dgram_write(bp, str, n);
return (ret);
}
static int
BIO_dgram_should_retry(int i)
{
int err;
if ((i == 0) || (i == -1)) {
err = errno;
return (BIO_dgram_non_fatal_error(err));
}
return (0);
}
int
BIO_dgram_non_fatal_error(int err)
{
switch (err) {
case EINTR:
case EAGAIN:
case EINPROGRESS:
case EALREADY:
return (1);
default:
break;
}
return (0);
}
#endif