yuzu-early/externals/cubeb/googletest/test/gtest-param-test_test.cc
2020-12-28 15:15:37 +00:00

896 lines
32 KiB
C++
Executable File

// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: vladl@google.com (Vlad Losev)
//
// Tests for Google Test itself. This file verifies that the parameter
// generators objects produce correct parameter sequences and that
// Google Test runtime instantiates correct tests from those sequences.
#include "gtest/gtest.h"
#if GTEST_HAS_PARAM_TEST
# include <algorithm>
# include <iostream>
# include <list>
# include <sstream>
# include <string>
# include <vector>
// To include gtest-internal-inl.h.
# define GTEST_IMPLEMENTATION_ 1
# include "src/gtest-internal-inl.h" // for UnitTestOptions
# undef GTEST_IMPLEMENTATION_
# include "test/gtest-param-test_test.h"
using ::std::vector;
using ::std::sort;
using ::testing::AddGlobalTestEnvironment;
using ::testing::Bool;
using ::testing::Message;
using ::testing::Range;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::ValuesIn;
# if GTEST_HAS_COMBINE
using ::testing::Combine;
using ::std::tr1::get;
using ::std::tr1::make_tuple;
using ::std::tr1::tuple;
# endif // GTEST_HAS_COMBINE
using ::testing::internal::ParamGenerator;
using ::testing::internal::UnitTestOptions;
// Prints a value to a string.
//
// TODO(wan@google.com): remove PrintValue() when we move matchers and
// EXPECT_THAT() from Google Mock to Google Test. At that time, we
// can write EXPECT_THAT(x, Eq(y)) to compare two tuples x and y, as
// EXPECT_THAT() and the matchers know how to print tuples.
template <typename T>
::std::string PrintValue(const T& value) {
::std::stringstream stream;
stream << value;
return stream.str();
}
# if GTEST_HAS_COMBINE
// These overloads allow printing tuples in our tests. We cannot
// define an operator<< for tuples, as that definition needs to be in
// the std namespace in order to be picked up by Google Test via
// Argument-Dependent Lookup, yet defining anything in the std
// namespace in non-STL code is undefined behavior.
template <typename T1, typename T2>
::std::string PrintValue(const tuple<T1, T2>& value) {
::std::stringstream stream;
stream << "(" << get<0>(value) << ", " << get<1>(value) << ")";
return stream.str();
}
template <typename T1, typename T2, typename T3>
::std::string PrintValue(const tuple<T1, T2, T3>& value) {
::std::stringstream stream;
stream << "(" << get<0>(value) << ", " << get<1>(value)
<< ", "<< get<2>(value) << ")";
return stream.str();
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9, typename T10>
::std::string PrintValue(
const tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& value) {
::std::stringstream stream;
stream << "(" << get<0>(value) << ", " << get<1>(value)
<< ", "<< get<2>(value) << ", " << get<3>(value)
<< ", "<< get<4>(value) << ", " << get<5>(value)
<< ", "<< get<6>(value) << ", " << get<7>(value)
<< ", "<< get<8>(value) << ", " << get<9>(value) << ")";
return stream.str();
}
# endif // GTEST_HAS_COMBINE
// Verifies that a sequence generated by the generator and accessed
// via the iterator object matches the expected one using Google Test
// assertions.
template <typename T, size_t N>
void VerifyGenerator(const ParamGenerator<T>& generator,
const T (&expected_values)[N]) {
typename ParamGenerator<T>::iterator it = generator.begin();
for (size_t i = 0; i < N; ++i) {
ASSERT_FALSE(it == generator.end())
<< "At element " << i << " when accessing via an iterator "
<< "created with the copy constructor.\n";
// We cannot use EXPECT_EQ() here as the values may be tuples,
// which don't support <<.
EXPECT_TRUE(expected_values[i] == *it)
<< "where i is " << i
<< ", expected_values[i] is " << PrintValue(expected_values[i])
<< ", *it is " << PrintValue(*it)
<< ", and 'it' is an iterator created with the copy constructor.\n";
it++;
}
EXPECT_TRUE(it == generator.end())
<< "At the presumed end of sequence when accessing via an iterator "
<< "created with the copy constructor.\n";
// Test the iterator assignment. The following lines verify that
// the sequence accessed via an iterator initialized via the
// assignment operator (as opposed to a copy constructor) matches
// just the same.
it = generator.begin();
for (size_t i = 0; i < N; ++i) {
ASSERT_FALSE(it == generator.end())
<< "At element " << i << " when accessing via an iterator "
<< "created with the assignment operator.\n";
EXPECT_TRUE(expected_values[i] == *it)
<< "where i is " << i
<< ", expected_values[i] is " << PrintValue(expected_values[i])
<< ", *it is " << PrintValue(*it)
<< ", and 'it' is an iterator created with the copy constructor.\n";
it++;
}
EXPECT_TRUE(it == generator.end())
<< "At the presumed end of sequence when accessing via an iterator "
<< "created with the assignment operator.\n";
}
template <typename T>
void VerifyGeneratorIsEmpty(const ParamGenerator<T>& generator) {
typename ParamGenerator<T>::iterator it = generator.begin();
EXPECT_TRUE(it == generator.end());
it = generator.begin();
EXPECT_TRUE(it == generator.end());
}
// Generator tests. They test that each of the provided generator functions
// generates an expected sequence of values. The general test pattern
// instantiates a generator using one of the generator functions,
// checks the sequence produced by the generator using its iterator API,
// and then resets the iterator back to the beginning of the sequence
// and checks the sequence again.
// Tests that iterators produced by generator functions conform to the
// ForwardIterator concept.
TEST(IteratorTest, ParamIteratorConformsToForwardIteratorConcept) {
const ParamGenerator<int> gen = Range(0, 10);
ParamGenerator<int>::iterator it = gen.begin();
// Verifies that iterator initialization works as expected.
ParamGenerator<int>::iterator it2 = it;
EXPECT_TRUE(*it == *it2) << "Initialized iterators must point to the "
<< "element same as its source points to";
// Verifies that iterator assignment works as expected.
it++;
EXPECT_FALSE(*it == *it2);
it2 = it;
EXPECT_TRUE(*it == *it2) << "Assigned iterators must point to the "
<< "element same as its source points to";
// Verifies that prefix operator++() returns *this.
EXPECT_EQ(&it, &(++it)) << "Result of the prefix operator++ must be "
<< "refer to the original object";
// Verifies that the result of the postfix operator++ points to the value
// pointed to by the original iterator.
int original_value = *it; // Have to compute it outside of macro call to be
// unaffected by the parameter evaluation order.
EXPECT_EQ(original_value, *(it++));
// Verifies that prefix and postfix operator++() advance an iterator
// all the same.
it2 = it;
it++;
++it2;
EXPECT_TRUE(*it == *it2);
}
// Tests that Range() generates the expected sequence.
TEST(RangeTest, IntRangeWithDefaultStep) {
const ParamGenerator<int> gen = Range(0, 3);
const int expected_values[] = {0, 1, 2};
VerifyGenerator(gen, expected_values);
}
// Edge case. Tests that Range() generates the single element sequence
// as expected when provided with range limits that are equal.
TEST(RangeTest, IntRangeSingleValue) {
const ParamGenerator<int> gen = Range(0, 1);
const int expected_values[] = {0};
VerifyGenerator(gen, expected_values);
}
// Edge case. Tests that Range() with generates empty sequence when
// supplied with an empty range.
TEST(RangeTest, IntRangeEmpty) {
const ParamGenerator<int> gen = Range(0, 0);
VerifyGeneratorIsEmpty(gen);
}
// Tests that Range() with custom step (greater then one) generates
// the expected sequence.
TEST(RangeTest, IntRangeWithCustomStep) {
const ParamGenerator<int> gen = Range(0, 9, 3);
const int expected_values[] = {0, 3, 6};
VerifyGenerator(gen, expected_values);
}
// Tests that Range() with custom step (greater then one) generates
// the expected sequence when the last element does not fall on the
// upper range limit. Sequences generated by Range() must not have
// elements beyond the range limits.
TEST(RangeTest, IntRangeWithCustomStepOverUpperBound) {
const ParamGenerator<int> gen = Range(0, 4, 3);
const int expected_values[] = {0, 3};
VerifyGenerator(gen, expected_values);
}
// Verifies that Range works with user-defined types that define
// copy constructor, operator=(), operator+(), and operator<().
class DogAdder {
public:
explicit DogAdder(const char* a_value) : value_(a_value) {}
DogAdder(const DogAdder& other) : value_(other.value_.c_str()) {}
DogAdder operator=(const DogAdder& other) {
if (this != &other)
value_ = other.value_;
return *this;
}
DogAdder operator+(const DogAdder& other) const {
Message msg;
msg << value_.c_str() << other.value_.c_str();
return DogAdder(msg.GetString().c_str());
}
bool operator<(const DogAdder& other) const {
return value_ < other.value_;
}
const ::testing::internal::String& value() const { return value_; }
private:
::testing::internal::String value_;
};
TEST(RangeTest, WorksWithACustomType) {
const ParamGenerator<DogAdder> gen =
Range(DogAdder("cat"), DogAdder("catdogdog"), DogAdder("dog"));
ParamGenerator<DogAdder>::iterator it = gen.begin();
ASSERT_FALSE(it == gen.end());
EXPECT_STREQ("cat", it->value().c_str());
ASSERT_FALSE(++it == gen.end());
EXPECT_STREQ("catdog", it->value().c_str());
EXPECT_TRUE(++it == gen.end());
}
class IntWrapper {
public:
explicit IntWrapper(int a_value) : value_(a_value) {}
IntWrapper(const IntWrapper& other) : value_(other.value_) {}
IntWrapper operator=(const IntWrapper& other) {
value_ = other.value_;
return *this;
}
// operator+() adds a different type.
IntWrapper operator+(int other) const { return IntWrapper(value_ + other); }
bool operator<(const IntWrapper& other) const {
return value_ < other.value_;
}
int value() const { return value_; }
private:
int value_;
};
TEST(RangeTest, WorksWithACustomTypeWithDifferentIncrementType) {
const ParamGenerator<IntWrapper> gen = Range(IntWrapper(0), IntWrapper(2));
ParamGenerator<IntWrapper>::iterator it = gen.begin();
ASSERT_FALSE(it == gen.end());
EXPECT_EQ(0, it->value());
ASSERT_FALSE(++it == gen.end());
EXPECT_EQ(1, it->value());
EXPECT_TRUE(++it == gen.end());
}
// Tests that ValuesIn() with an array parameter generates
// the expected sequence.
TEST(ValuesInTest, ValuesInArray) {
int array[] = {3, 5, 8};
const ParamGenerator<int> gen = ValuesIn(array);
VerifyGenerator(gen, array);
}
// Tests that ValuesIn() with a const array parameter generates
// the expected sequence.
TEST(ValuesInTest, ValuesInConstArray) {
const int array[] = {3, 5, 8};
const ParamGenerator<int> gen = ValuesIn(array);
VerifyGenerator(gen, array);
}
// Edge case. Tests that ValuesIn() with an array parameter containing a
// single element generates the single element sequence.
TEST(ValuesInTest, ValuesInSingleElementArray) {
int array[] = {42};
const ParamGenerator<int> gen = ValuesIn(array);
VerifyGenerator(gen, array);
}
// Tests that ValuesIn() generates the expected sequence for an STL
// container (vector).
TEST(ValuesInTest, ValuesInVector) {
typedef ::std::vector<int> ContainerType;
ContainerType values;
values.push_back(3);
values.push_back(5);
values.push_back(8);
const ParamGenerator<int> gen = ValuesIn(values);
const int expected_values[] = {3, 5, 8};
VerifyGenerator(gen, expected_values);
}
// Tests that ValuesIn() generates the expected sequence.
TEST(ValuesInTest, ValuesInIteratorRange) {
typedef ::std::vector<int> ContainerType;
ContainerType values;
values.push_back(3);
values.push_back(5);
values.push_back(8);
const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
const int expected_values[] = {3, 5, 8};
VerifyGenerator(gen, expected_values);
}
// Edge case. Tests that ValuesIn() provided with an iterator range specifying a
// single value generates a single-element sequence.
TEST(ValuesInTest, ValuesInSingleElementIteratorRange) {
typedef ::std::vector<int> ContainerType;
ContainerType values;
values.push_back(42);
const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
const int expected_values[] = {42};
VerifyGenerator(gen, expected_values);
}
// Edge case. Tests that ValuesIn() provided with an empty iterator range
// generates an empty sequence.
TEST(ValuesInTest, ValuesInEmptyIteratorRange) {
typedef ::std::vector<int> ContainerType;
ContainerType values;
const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
VerifyGeneratorIsEmpty(gen);
}
// Tests that the Values() generates the expected sequence.
TEST(ValuesTest, ValuesWorks) {
const ParamGenerator<int> gen = Values(3, 5, 8);
const int expected_values[] = {3, 5, 8};
VerifyGenerator(gen, expected_values);
}
// Tests that Values() generates the expected sequences from elements of
// different types convertible to ParamGenerator's parameter type.
TEST(ValuesTest, ValuesWorksForValuesOfCompatibleTypes) {
const ParamGenerator<double> gen = Values(3, 5.0f, 8.0);
const double expected_values[] = {3.0, 5.0, 8.0};
VerifyGenerator(gen, expected_values);
}
TEST(ValuesTest, ValuesWorksForMaxLengthList) {
const ParamGenerator<int> gen = Values(
10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
410, 420, 430, 440, 450, 460, 470, 480, 490, 500);
const int expected_values[] = {
10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
410, 420, 430, 440, 450, 460, 470, 480, 490, 500};
VerifyGenerator(gen, expected_values);
}
// Edge case test. Tests that single-parameter Values() generates the sequence
// with the single value.
TEST(ValuesTest, ValuesWithSingleParameter) {
const ParamGenerator<int> gen = Values(42);
const int expected_values[] = {42};
VerifyGenerator(gen, expected_values);
}
// Tests that Bool() generates sequence (false, true).
TEST(BoolTest, BoolWorks) {
const ParamGenerator<bool> gen = Bool();
const bool expected_values[] = {false, true};
VerifyGenerator(gen, expected_values);
}
# if GTEST_HAS_COMBINE
// Tests that Combine() with two parameters generates the expected sequence.
TEST(CombineTest, CombineWithTwoParameters) {
const char* foo = "foo";
const char* bar = "bar";
const ParamGenerator<tuple<const char*, int> > gen =
Combine(Values(foo, bar), Values(3, 4));
tuple<const char*, int> expected_values[] = {
make_tuple(foo, 3), make_tuple(foo, 4),
make_tuple(bar, 3), make_tuple(bar, 4)};
VerifyGenerator(gen, expected_values);
}
// Tests that Combine() with three parameters generates the expected sequence.
TEST(CombineTest, CombineWithThreeParameters) {
const ParamGenerator<tuple<int, int, int> > gen = Combine(Values(0, 1),
Values(3, 4),
Values(5, 6));
tuple<int, int, int> expected_values[] = {
make_tuple(0, 3, 5), make_tuple(0, 3, 6),
make_tuple(0, 4, 5), make_tuple(0, 4, 6),
make_tuple(1, 3, 5), make_tuple(1, 3, 6),
make_tuple(1, 4, 5), make_tuple(1, 4, 6)};
VerifyGenerator(gen, expected_values);
}
// Tests that the Combine() with the first parameter generating a single value
// sequence generates a sequence with the number of elements equal to the
// number of elements in the sequence generated by the second parameter.
TEST(CombineTest, CombineWithFirstParameterSingleValue) {
const ParamGenerator<tuple<int, int> > gen = Combine(Values(42),
Values(0, 1));
tuple<int, int> expected_values[] = {make_tuple(42, 0), make_tuple(42, 1)};
VerifyGenerator(gen, expected_values);
}
// Tests that the Combine() with the second parameter generating a single value
// sequence generates a sequence with the number of elements equal to the
// number of elements in the sequence generated by the first parameter.
TEST(CombineTest, CombineWithSecondParameterSingleValue) {
const ParamGenerator<tuple<int, int> > gen = Combine(Values(0, 1),
Values(42));
tuple<int, int> expected_values[] = {make_tuple(0, 42), make_tuple(1, 42)};
VerifyGenerator(gen, expected_values);
}
// Tests that when the first parameter produces an empty sequence,
// Combine() produces an empty sequence, too.
TEST(CombineTest, CombineWithFirstParameterEmptyRange) {
const ParamGenerator<tuple<int, int> > gen = Combine(Range(0, 0),
Values(0, 1));
VerifyGeneratorIsEmpty(gen);
}
// Tests that when the second parameter produces an empty sequence,
// Combine() produces an empty sequence, too.
TEST(CombineTest, CombineWithSecondParameterEmptyRange) {
const ParamGenerator<tuple<int, int> > gen = Combine(Values(0, 1),
Range(1, 1));
VerifyGeneratorIsEmpty(gen);
}
// Edge case. Tests that combine works with the maximum number
// of parameters supported by Google Test (currently 10).
TEST(CombineTest, CombineWithMaxNumberOfParameters) {
const char* foo = "foo";
const char* bar = "bar";
const ParamGenerator<tuple<const char*, int, int, int, int, int, int, int,
int, int> > gen = Combine(Values(foo, bar),
Values(1), Values(2),
Values(3), Values(4),
Values(5), Values(6),
Values(7), Values(8),
Values(9));
tuple<const char*, int, int, int, int, int, int, int, int, int>
expected_values[] = {make_tuple(foo, 1, 2, 3, 4, 5, 6, 7, 8, 9),
make_tuple(bar, 1, 2, 3, 4, 5, 6, 7, 8, 9)};
VerifyGenerator(gen, expected_values);
}
# endif // GTEST_HAS_COMBINE
// Tests that an generator produces correct sequence after being
// assigned from another generator.
TEST(ParamGeneratorTest, AssignmentWorks) {
ParamGenerator<int> gen = Values(1, 2);
const ParamGenerator<int> gen2 = Values(3, 4);
gen = gen2;
const int expected_values[] = {3, 4};
VerifyGenerator(gen, expected_values);
}
// This test verifies that the tests are expanded and run as specified:
// one test per element from the sequence produced by the generator
// specified in INSTANTIATE_TEST_CASE_P. It also verifies that the test's
// fixture constructor, SetUp(), and TearDown() have run and have been
// supplied with the correct parameters.
// The use of environment object allows detection of the case where no test
// case functionality is run at all. In this case TestCaseTearDown will not
// be able to detect missing tests, naturally.
template <int kExpectedCalls>
class TestGenerationEnvironment : public ::testing::Environment {
public:
static TestGenerationEnvironment* Instance() {
static TestGenerationEnvironment* instance = new TestGenerationEnvironment;
return instance;
}
void FixtureConstructorExecuted() { fixture_constructor_count_++; }
void SetUpExecuted() { set_up_count_++; }
void TearDownExecuted() { tear_down_count_++; }
void TestBodyExecuted() { test_body_count_++; }
virtual void TearDown() {
// If all MultipleTestGenerationTest tests have been de-selected
// by the filter flag, the following checks make no sense.
bool perform_check = false;
for (int i = 0; i < kExpectedCalls; ++i) {
Message msg;
msg << "TestsExpandedAndRun/" << i;
if (UnitTestOptions::FilterMatchesTest(
"TestExpansionModule/MultipleTestGenerationTest",
msg.GetString().c_str())) {
perform_check = true;
}
}
if (perform_check) {
EXPECT_EQ(kExpectedCalls, fixture_constructor_count_)
<< "Fixture constructor of ParamTestGenerationTest test case "
<< "has not been run as expected.";
EXPECT_EQ(kExpectedCalls, set_up_count_)
<< "Fixture SetUp method of ParamTestGenerationTest test case "
<< "has not been run as expected.";
EXPECT_EQ(kExpectedCalls, tear_down_count_)
<< "Fixture TearDown method of ParamTestGenerationTest test case "
<< "has not been run as expected.";
EXPECT_EQ(kExpectedCalls, test_body_count_)
<< "Test in ParamTestGenerationTest test case "
<< "has not been run as expected.";
}
}
private:
TestGenerationEnvironment() : fixture_constructor_count_(0), set_up_count_(0),
tear_down_count_(0), test_body_count_(0) {}
int fixture_constructor_count_;
int set_up_count_;
int tear_down_count_;
int test_body_count_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationEnvironment);
};
const int test_generation_params[] = {36, 42, 72};
class TestGenerationTest : public TestWithParam<int> {
public:
enum {
PARAMETER_COUNT =
sizeof(test_generation_params)/sizeof(test_generation_params[0])
};
typedef TestGenerationEnvironment<PARAMETER_COUNT> Environment;
TestGenerationTest() {
Environment::Instance()->FixtureConstructorExecuted();
current_parameter_ = GetParam();
}
virtual void SetUp() {
Environment::Instance()->SetUpExecuted();
EXPECT_EQ(current_parameter_, GetParam());
}
virtual void TearDown() {
Environment::Instance()->TearDownExecuted();
EXPECT_EQ(current_parameter_, GetParam());
}
static void SetUpTestCase() {
bool all_tests_in_test_case_selected = true;
for (int i = 0; i < PARAMETER_COUNT; ++i) {
Message test_name;
test_name << "TestsExpandedAndRun/" << i;
if ( !UnitTestOptions::FilterMatchesTest(
"TestExpansionModule/MultipleTestGenerationTest",
test_name.GetString())) {
all_tests_in_test_case_selected = false;
}
}
EXPECT_TRUE(all_tests_in_test_case_selected)
<< "When running the TestGenerationTest test case all of its tests\n"
<< "must be selected by the filter flag for the test case to pass.\n"
<< "If not all of them are enabled, we can't reliably conclude\n"
<< "that the correct number of tests have been generated.";
collected_parameters_.clear();
}
static void TearDownTestCase() {
vector<int> expected_values(test_generation_params,
test_generation_params + PARAMETER_COUNT);
// Test execution order is not guaranteed by Google Test,
// so the order of values in collected_parameters_ can be
// different and we have to sort to compare.
sort(expected_values.begin(), expected_values.end());
sort(collected_parameters_.begin(), collected_parameters_.end());
EXPECT_TRUE(collected_parameters_ == expected_values);
}
protected:
int current_parameter_;
static vector<int> collected_parameters_;
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationTest);
};
vector<int> TestGenerationTest::collected_parameters_;
TEST_P(TestGenerationTest, TestsExpandedAndRun) {
Environment::Instance()->TestBodyExecuted();
EXPECT_EQ(current_parameter_, GetParam());
collected_parameters_.push_back(GetParam());
}
INSTANTIATE_TEST_CASE_P(TestExpansionModule, TestGenerationTest,
ValuesIn(test_generation_params));
// This test verifies that the element sequence (third parameter of
// INSTANTIATE_TEST_CASE_P) is evaluated in InitGoogleTest() and neither at
// the call site of INSTANTIATE_TEST_CASE_P nor in RUN_ALL_TESTS(). For
// that, we declare param_value_ to be a static member of
// GeneratorEvaluationTest and initialize it to 0. We set it to 1 in
// main(), just before invocation of InitGoogleTest(). After calling
// InitGoogleTest(), we set the value to 2. If the sequence is evaluated
// before or after InitGoogleTest, INSTANTIATE_TEST_CASE_P will create a
// test with parameter other than 1, and the test body will fail the
// assertion.
class GeneratorEvaluationTest : public TestWithParam<int> {
public:
static int param_value() { return param_value_; }
static void set_param_value(int param_value) { param_value_ = param_value; }
private:
static int param_value_;
};
int GeneratorEvaluationTest::param_value_ = 0;
TEST_P(GeneratorEvaluationTest, GeneratorsEvaluatedInMain) {
EXPECT_EQ(1, GetParam());
}
INSTANTIATE_TEST_CASE_P(GenEvalModule,
GeneratorEvaluationTest,
Values(GeneratorEvaluationTest::param_value()));
// Tests that generators defined in a different translation unit are
// functional. Generator extern_gen is defined in gtest-param-test_test2.cc.
extern ParamGenerator<int> extern_gen;
class ExternalGeneratorTest : public TestWithParam<int> {};
TEST_P(ExternalGeneratorTest, ExternalGenerator) {
// Sequence produced by extern_gen contains only a single value
// which we verify here.
EXPECT_EQ(GetParam(), 33);
}
INSTANTIATE_TEST_CASE_P(ExternalGeneratorModule,
ExternalGeneratorTest,
extern_gen);
// Tests that a parameterized test case can be defined in one translation
// unit and instantiated in another. This test will be instantiated in
// gtest-param-test_test2.cc. ExternalInstantiationTest fixture class is
// defined in gtest-param-test_test.h.
TEST_P(ExternalInstantiationTest, IsMultipleOf33) {
EXPECT_EQ(0, GetParam() % 33);
}
// Tests that a parameterized test case can be instantiated with multiple
// generators.
class MultipleInstantiationTest : public TestWithParam<int> {};
TEST_P(MultipleInstantiationTest, AllowsMultipleInstances) {
}
INSTANTIATE_TEST_CASE_P(Sequence1, MultipleInstantiationTest, Values(1, 2));
INSTANTIATE_TEST_CASE_P(Sequence2, MultipleInstantiationTest, Range(3, 5));
// Tests that a parameterized test case can be instantiated
// in multiple translation units. This test will be instantiated
// here and in gtest-param-test_test2.cc.
// InstantiationInMultipleTranslationUnitsTest fixture class
// is defined in gtest-param-test_test.h.
TEST_P(InstantiationInMultipleTranslaionUnitsTest, IsMultipleOf42) {
EXPECT_EQ(0, GetParam() % 42);
}
INSTANTIATE_TEST_CASE_P(Sequence1,
InstantiationInMultipleTranslaionUnitsTest,
Values(42, 42*2));
// Tests that each iteration of parameterized test runs in a separate test
// object.
class SeparateInstanceTest : public TestWithParam<int> {
public:
SeparateInstanceTest() : count_(0) {}
static void TearDownTestCase() {
EXPECT_GE(global_count_, 2)
<< "If some (but not all) SeparateInstanceTest tests have been "
<< "filtered out this test will fail. Make sure that all "
<< "GeneratorEvaluationTest are selected or de-selected together "
<< "by the test filter.";
}
protected:
int count_;
static int global_count_;
};
int SeparateInstanceTest::global_count_ = 0;
TEST_P(SeparateInstanceTest, TestsRunInSeparateInstances) {
EXPECT_EQ(0, count_++);
global_count_++;
}
INSTANTIATE_TEST_CASE_P(FourElemSequence, SeparateInstanceTest, Range(1, 4));
// Tests that all instantiations of a test have named appropriately. Test
// defined with TEST_P(TestCaseName, TestName) and instantiated with
// INSTANTIATE_TEST_CASE_P(SequenceName, TestCaseName, generator) must be named
// SequenceName/TestCaseName.TestName/i, where i is the 0-based index of the
// sequence element used to instantiate the test.
class NamingTest : public TestWithParam<int> {};
TEST_P(NamingTest, TestsReportCorrectNamesAndParameters) {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
EXPECT_STREQ("ZeroToFiveSequence/NamingTest", test_info->test_case_name());
Message index_stream;
index_stream << "TestsReportCorrectNamesAndParameters/" << GetParam();
EXPECT_STREQ(index_stream.GetString().c_str(), test_info->name());
EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param());
}
INSTANTIATE_TEST_CASE_P(ZeroToFiveSequence, NamingTest, Range(0, 5));
// Class that cannot be streamed into an ostream. It needs to be copyable
// (and, in case of MSVC, also assignable) in order to be a test parameter
// type. Its default copy constructor and assignment operator do exactly
// what we need.
class Unstreamable {
public:
explicit Unstreamable(int value) : value_(value) {}
private:
int value_;
};
class CommentTest : public TestWithParam<Unstreamable> {};
TEST_P(CommentTest, TestsCorrectlyReportUnstreamableParams) {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param());
}
INSTANTIATE_TEST_CASE_P(InstantiationWithComments,
CommentTest,
Values(Unstreamable(1)));
// Verify that we can create a hierarchy of test fixtures, where the base
// class fixture is not parameterized and the derived class is. In this case
// ParameterizedDerivedTest inherits from NonParameterizedBaseTest. We
// perform simple tests on both.
class NonParameterizedBaseTest : public ::testing::Test {
public:
NonParameterizedBaseTest() : n_(17) { }
protected:
int n_;
};
class ParameterizedDerivedTest : public NonParameterizedBaseTest,
public ::testing::WithParamInterface<int> {
protected:
ParameterizedDerivedTest() : count_(0) { }
int count_;
static int global_count_;
};
int ParameterizedDerivedTest::global_count_ = 0;
TEST_F(NonParameterizedBaseTest, FixtureIsInitialized) {
EXPECT_EQ(17, n_);
}
TEST_P(ParameterizedDerivedTest, SeesSequence) {
EXPECT_EQ(17, n_);
EXPECT_EQ(0, count_++);
EXPECT_EQ(GetParam(), global_count_++);
}
INSTANTIATE_TEST_CASE_P(RangeZeroToFive, ParameterizedDerivedTest, Range(0, 5));
#endif // GTEST_HAS_PARAM_TEST
TEST(CompileTest, CombineIsDefinedOnlyWhenGtestHasParamTestIsDefined) {
#if GTEST_HAS_COMBINE && !GTEST_HAS_PARAM_TEST
FAIL() << "GTEST_HAS_COMBINE is defined while GTEST_HAS_PARAM_TEST is not\n"
#endif
}
int main(int argc, char **argv) {
#if GTEST_HAS_PARAM_TEST
// Used in TestGenerationTest test case.
AddGlobalTestEnvironment(TestGenerationTest::Environment::Instance());
// Used in GeneratorEvaluationTest test case. Tests that the updated value
// will be picked up for instantiating tests in GeneratorEvaluationTest.
GeneratorEvaluationTest::set_param_value(1);
#endif // GTEST_HAS_PARAM_TEST
::testing::InitGoogleTest(&argc, argv);
#if GTEST_HAS_PARAM_TEST
// Used in GeneratorEvaluationTest test case. Tests that value updated
// here will NOT be used for instantiating tests in
// GeneratorEvaluationTest.
GeneratorEvaluationTest::set_param_value(2);
#endif // GTEST_HAS_PARAM_TEST
return RUN_ALL_TESTS();
}