yuzu/src/video_core/gpu.cpp

402 lines
13 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/microprofile.h"
#include "core/core.h"
#include "core/core_timing.h"
2020-02-10 15:32:51 +01:00
#include "core/core_timing_util.h"
#include "core/memory.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
namespace Tegra {
MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192));
GPU::GPU(Core::System& system, VideoCore::RendererBase& renderer, bool is_async)
: system{system}, renderer{renderer}, is_async{is_async} {
auto& rasterizer{renderer.Rasterizer()};
memory_manager = std::make_unique<Tegra::MemoryManager>(system);
dma_pusher = std::make_unique<Tegra::DmaPusher>(*this);
maxwell_3d = std::make_unique<Engines::Maxwell3D>(system, rasterizer, *memory_manager);
fermi_2d = std::make_unique<Engines::Fermi2D>(rasterizer);
kepler_compute = std::make_unique<Engines::KeplerCompute>(system, rasterizer, *memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(system, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(system, *memory_manager);
}
GPU::~GPU() = default;
Engines::Maxwell3D& GPU::Maxwell3D() {
return *maxwell_3d;
}
const Engines::Maxwell3D& GPU::Maxwell3D() const {
return *maxwell_3d;
}
Engines::KeplerCompute& GPU::KeplerCompute() {
return *kepler_compute;
}
const Engines::KeplerCompute& GPU::KeplerCompute() const {
return *kepler_compute;
}
MemoryManager& GPU::MemoryManager() {
return *memory_manager;
}
const MemoryManager& GPU::MemoryManager() const {
return *memory_manager;
}
DmaPusher& GPU::DmaPusher() {
return *dma_pusher;
}
const DmaPusher& GPU::DmaPusher() const {
return *dma_pusher;
}
void GPU::WaitFence(u32 syncpoint_id, u32 value) {
// Synced GPU, is always in sync
if (!is_async) {
return;
}
MICROPROFILE_SCOPE(GPU_wait);
std::unique_lock lock{sync_mutex};
sync_cv.wait(lock, [=]() { return syncpoints[syncpoint_id].load() >= value; });
}
void GPU::IncrementSyncPoint(const u32 syncpoint_id) {
syncpoints[syncpoint_id]++;
2019-06-18 22:58:29 +02:00
std::lock_guard lock{sync_mutex};
sync_cv.notify_all();
if (!syncpt_interrupts[syncpoint_id].empty()) {
u32 value = syncpoints[syncpoint_id].load();
auto it = syncpt_interrupts[syncpoint_id].begin();
while (it != syncpt_interrupts[syncpoint_id].end()) {
if (value >= *it) {
TriggerCpuInterrupt(syncpoint_id, *it);
it = syncpt_interrupts[syncpoint_id].erase(it);
continue;
}
it++;
}
}
}
u32 GPU::GetSyncpointValue(const u32 syncpoint_id) const {
return syncpoints[syncpoint_id].load();
}
void GPU::RegisterSyncptInterrupt(const u32 syncpoint_id, const u32 value) {
auto& interrupt = syncpt_interrupts[syncpoint_id];
bool contains = std::any_of(interrupt.begin(), interrupt.end(),
[value](u32 in_value) { return in_value == value; });
if (contains) {
return;
}
syncpt_interrupts[syncpoint_id].emplace_back(value);
}
bool GPU::CancelSyncptInterrupt(const u32 syncpoint_id, const u32 value) {
2019-06-18 22:58:29 +02:00
std::lock_guard lock{sync_mutex};
auto& interrupt = syncpt_interrupts[syncpoint_id];
const auto iter =
std::find_if(interrupt.begin(), interrupt.end(),
[value](u32 interrupt_value) { return value == interrupt_value; });
if (iter == interrupt.end()) {
return false;
2019-06-08 03:13:20 +02:00
}
interrupt.erase(iter);
return true;
2019-06-08 03:13:20 +02:00
}
2020-02-10 15:32:51 +01:00
// This values were reversed engineered by fincs from NVN
// The gpu clock is reported in units of 385/625 nanoseconds
constexpr u64 gpu_ticks_num = 384;
constexpr u64 gpu_ticks_den = 625;
u64 GPU::GetTicks() const {
const u64 cpu_ticks = system.CoreTiming().GetTicks();
const u64 nanoseconds = Core::Timing::CyclesToNs(cpu_ticks).count();
return (nanoseconds * gpu_ticks_num) / gpu_ticks_den;
}
void GPU::FlushCommands() {
renderer.Rasterizer().FlushCommands();
}
u32 RenderTargetBytesPerPixel(RenderTargetFormat format) {
ASSERT(format != RenderTargetFormat::NONE);
switch (format) {
case RenderTargetFormat::RGBA32_FLOAT:
case RenderTargetFormat::RGBA32_UINT:
return 16;
case RenderTargetFormat::RGBA16_UINT:
case RenderTargetFormat::RGBA16_UNORM:
case RenderTargetFormat::RGBA16_FLOAT:
case RenderTargetFormat::RGBX16_FLOAT:
case RenderTargetFormat::RG32_FLOAT:
case RenderTargetFormat::RG32_UINT:
return 8;
case RenderTargetFormat::RGBA8_UNORM:
case RenderTargetFormat::RGBA8_SNORM:
case RenderTargetFormat::RGBA8_SRGB:
2018-08-20 14:26:54 +02:00
case RenderTargetFormat::RGBA8_UINT:
case RenderTargetFormat::RGB10_A2_UNORM:
case RenderTargetFormat::BGRA8_UNORM:
case RenderTargetFormat::BGRA8_SRGB:
case RenderTargetFormat::RG16_UNORM:
case RenderTargetFormat::RG16_SNORM:
case RenderTargetFormat::RG16_UINT:
case RenderTargetFormat::RG16_SINT:
case RenderTargetFormat::RG16_FLOAT:
2018-08-01 15:31:42 +02:00
case RenderTargetFormat::R32_FLOAT:
case RenderTargetFormat::R11G11B10_FLOAT:
case RenderTargetFormat::R32_UINT:
return 4;
case RenderTargetFormat::R16_UNORM:
case RenderTargetFormat::R16_SNORM:
case RenderTargetFormat::R16_UINT:
case RenderTargetFormat::R16_SINT:
case RenderTargetFormat::R16_FLOAT:
case RenderTargetFormat::RG8_UNORM:
case RenderTargetFormat::RG8_SNORM:
return 2;
case RenderTargetFormat::R8_UNORM:
case RenderTargetFormat::R8_UINT:
return 1;
default:
UNIMPLEMENTED_MSG("Unimplemented render target format {}", static_cast<u32>(format));
return 1;
}
}
u32 DepthFormatBytesPerPixel(DepthFormat format) {
switch (format) {
case DepthFormat::Z32_S8_X24_FLOAT:
return 8;
case DepthFormat::Z32_FLOAT:
case DepthFormat::S8_Z24_UNORM:
case DepthFormat::Z24_X8_UNORM:
case DepthFormat::Z24_S8_UNORM:
case DepthFormat::Z24_C8_UNORM:
return 4;
case DepthFormat::Z16_UNORM:
return 2;
default:
UNIMPLEMENTED_MSG("Unimplemented Depth format {}", static_cast<u32>(format));
return 1;
}
}
// Note that, traditionally, methods are treated as 4-byte addressable locations, and hence
// their numbers are written down multiplied by 4 in Docs. Here we are not multiply by 4.
// So the values you see in docs might be multiplied by 4.
enum class BufferMethods {
BindObject = 0x0,
Nop = 0x2,
SemaphoreAddressHigh = 0x4,
SemaphoreAddressLow = 0x5,
SemaphoreSequence = 0x6,
SemaphoreTrigger = 0x7,
NotifyIntr = 0x8,
WrcacheFlush = 0x9,
Unk28 = 0xA,
UnkCacheFlush = 0xB,
RefCnt = 0x14,
SemaphoreAcquire = 0x1A,
SemaphoreRelease = 0x1B,
FenceValue = 0x1C,
FenceAction = 0x1D,
Unk78 = 0x1E,
Unk7c = 0x1F,
Yield = 0x20,
NonPullerMethods = 0x40,
};
enum class GpuSemaphoreOperation {
AcquireEqual = 0x1,
WriteLong = 0x2,
AcquireGequal = 0x4,
AcquireMask = 0x8,
};
void GPU::CallMethod(const MethodCall& method_call) {
LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method,
method_call.subchannel);
ASSERT(method_call.subchannel < bound_engines.size());
if (ExecuteMethodOnEngine(method_call)) {
CallEngineMethod(method_call);
} else {
CallPullerMethod(method_call);
}
}
bool GPU::ExecuteMethodOnEngine(const MethodCall& method_call) {
const auto method = static_cast<BufferMethods>(method_call.method);
return method >= BufferMethods::NonPullerMethods;
}
void GPU::CallPullerMethod(const MethodCall& method_call) {
regs.reg_array[method_call.method] = method_call.argument;
const auto method = static_cast<BufferMethods>(method_call.method);
switch (method) {
case BufferMethods::BindObject: {
ProcessBindMethod(method_call);
break;
}
case BufferMethods::Nop:
case BufferMethods::SemaphoreAddressHigh:
case BufferMethods::SemaphoreAddressLow:
case BufferMethods::SemaphoreSequence:
case BufferMethods::RefCnt:
case BufferMethods::UnkCacheFlush:
case BufferMethods::WrcacheFlush:
case BufferMethods::FenceValue:
case BufferMethods::FenceAction:
break;
case BufferMethods::SemaphoreTrigger: {
ProcessSemaphoreTriggerMethod();
break;
}
case BufferMethods::NotifyIntr: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented");
break;
}
case BufferMethods::Unk28: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented");
break;
}
case BufferMethods::SemaphoreAcquire: {
ProcessSemaphoreAcquire();
break;
}
case BufferMethods::SemaphoreRelease: {
ProcessSemaphoreRelease();
break;
}
case BufferMethods::Yield: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented");
break;
}
default:
LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented",
static_cast<u32>(method));
break;
}
}
void GPU::CallEngineMethod(const MethodCall& method_call) {
const EngineID engine = bound_engines[method_call.subchannel];
switch (engine) {
case EngineID::FERMI_TWOD_A:
fermi_2d->CallMethod(method_call);
break;
case EngineID::MAXWELL_B:
maxwell_3d->CallMethod(method_call);
break;
case EngineID::KEPLER_COMPUTE_B:
kepler_compute->CallMethod(method_call);
break;
case EngineID::MAXWELL_DMA_COPY_A:
maxwell_dma->CallMethod(method_call);
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
kepler_memory->CallMethod(method_call);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine");
}
}
void GPU::ProcessBindMethod(const MethodCall& method_call) {
// Bind the current subchannel to the desired engine id.
LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel,
method_call.argument);
bound_engines[method_call.subchannel] = static_cast<EngineID>(method_call.argument);
}
void GPU::ProcessSemaphoreTriggerMethod() {
const auto semaphoreOperationMask = 0xF;
const auto op =
static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
if (op == GpuSemaphoreOperation::WriteLong) {
struct Block {
u32 sequence;
u32 zeros = 0;
u64 timestamp;
};
Block block{};
block.sequence = regs.semaphore_sequence;
// TODO(Kmather73): Generate a real GPU timestamp and write it here instead of
// CoreTiming
2020-02-10 15:32:51 +01:00
block.timestamp = GetTicks();
memory_manager->WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block,
sizeof(block));
} else {
const u32 word{memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress())};
if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) ||
(op == GpuSemaphoreOperation::AcquireGequal &&
static_cast<s32>(word - regs.semaphore_sequence) > 0) ||
(op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) {
// Nothing to do in this case
} else {
regs.acquire_source = true;
regs.acquire_value = regs.semaphore_sequence;
if (op == GpuSemaphoreOperation::AcquireEqual) {
regs.acquire_active = true;
regs.acquire_mode = false;
} else if (op == GpuSemaphoreOperation::AcquireGequal) {
regs.acquire_active = true;
regs.acquire_mode = true;
} else if (op == GpuSemaphoreOperation::AcquireMask) {
// TODO(kemathe) The acquire mask operation waits for a value that, ANDed with
// semaphore_sequence, gives a non-0 result
LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented");
} else {
LOG_ERROR(HW_GPU, "Invalid semaphore operation");
}
}
}
}
void GPU::ProcessSemaphoreRelease() {
memory_manager->Write<u32>(regs.semaphore_address.SemaphoreAddress(), regs.semaphore_release);
}
void GPU::ProcessSemaphoreAcquire() {
const u32 word = memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress());
const auto value = regs.semaphore_acquire;
if (word != value) {
regs.acquire_active = true;
regs.acquire_value = value;
// TODO(kemathe73) figure out how to do the acquire_timeout
regs.acquire_mode = false;
regs.acquire_source = false;
}
}
} // namespace Tegra