yuzu/src/input_common/motion_input.cpp

160 lines
4.5 KiB
C++
Raw Normal View History

#include "input_common/motion_input.h"
namespace InputCommon {
2020-08-24 03:41:59 +02:00
MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd)
: kp(new_kp), ki(new_ki), kd(new_kd), quat{{0, 0, -1}, 0} {}
2020-08-24 03:41:59 +02:00
void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
accel = acceleration;
}
2020-08-24 03:41:59 +02:00
void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
gyro = gyroscope - gyro_drift;
if (gyro.Length2() < gyro_threshold) {
gyro = {};
}
}
2020-08-24 03:41:59 +02:00
void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
quat = quaternion;
}
2020-08-24 03:41:59 +02:00
void MotionInput::SetGyroDrift(const Common::Vec3f& drift) {
gyro_drift = drift;
}
void MotionInput::SetGyroThreshold(f32 threshold) {
gyro_threshold = threshold;
}
void MotionInput::EnableReset(bool reset) {
reset_enabled = reset;
}
void MotionInput::ResetRotations() {
rotations = {};
}
2020-08-24 03:41:59 +02:00
bool MotionInput::IsMoving(f32 sensitivity) const {
return gyro.Length2() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
}
2020-08-24 03:41:59 +02:00
bool MotionInput::IsCalibrated(f32 sensitivity) const {
return real_error.Length() > sensitivity;
}
void MotionInput::UpdateRotation(u64 elapsed_time) {
rotations += gyro * elapsed_time;
}
void MotionInput::UpdateOrientation(u64 elapsed_time) {
// Short name local variable for readability
2020-08-24 03:41:59 +02:00
f32 q1 = quat.w;
f32 q2 = quat.xyz[0];
f32 q3 = quat.xyz[1];
f32 q4 = quat.xyz[2];
const f32 sample_period = elapsed_time / 1000000.0f;
2020-08-24 03:41:59 +02:00
const auto normal_accel = accel.Normalized();
auto rad_gyro = gyro * 3.1415926535f;
rad_gyro.z = -rad_gyro.z;
// Ignore drift correction if acceleration is not present
if (normal_accel.Length() == 1.0f) {
2020-08-24 03:41:59 +02:00
const f32 ax = -normal_accel.x;
const f32 ay = normal_accel.y;
const f32 az = -normal_accel.z;
// Estimated direction of gravity
2020-08-24 03:41:59 +02:00
const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
// Error is cross product between estimated direction and measured direction of gravity
2020-08-24 03:41:59 +02:00
const Common::Vec3f new_real_error = {ay * vz - az * vy, az * vx - ax * vz,
ax * vy - ay * vx};
derivative_error = new_real_error - real_error;
real_error = new_real_error;
// Prevent integral windup
if (ki != 0.0f) {
integral_error += real_error;
} else {
integral_error = {};
}
// Apply feedback terms
rad_gyro += kp * real_error;
rad_gyro += ki * integral_error;
rad_gyro += kd * derivative_error;
}
2020-08-24 03:41:59 +02:00
const f32 gx = rad_gyro.y;
const f32 gy = rad_gyro.x;
const f32 gz = rad_gyro.z;
// Integrate rate of change of quaternion
2020-08-24 03:41:59 +02:00
const f32 pa = q2;
const f32 pb = q3;
const f32 pc = q4;
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
quat.w = q1;
quat.xyz[0] = q2;
quat.xyz[1] = q3;
quat.xyz[2] = q4;
quat = quat.Normalized();
}
2020-08-24 03:41:59 +02:00
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
const Common::Quaternion<float> quad{.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
.w = -quat.xyz[2]};
const std::array<float, 16> matrix4x4 = quad.ToMatrix();
2020-08-24 03:41:59 +02:00
return {Common::Vec3f(matrix4x4[0], matrix4x4[1], matrix4x4[2]),
Common::Vec3f(matrix4x4[4], matrix4x4[5], matrix4x4[6]),
Common::Vec3f(matrix4x4[8], matrix4x4[9], matrix4x4[10])};
}
2020-08-24 03:41:59 +02:00
Common::Vec3f MotionInput::GetAcceleration() const {
return accel;
}
2020-08-24 03:41:59 +02:00
Common::Vec3f MotionInput::GetGyroscope() const {
return gyro;
}
2020-08-24 03:41:59 +02:00
Common::Quaternion<f32> MotionInput::GetQuaternion() const {
return quat;
}
2020-08-24 03:41:59 +02:00
Common::Vec3f MotionInput::GetRotations() const {
return rotations;
}
2020-08-24 03:41:59 +02:00
void MotionInput::ResetOrientation() {
if (!reset_enabled) {
return;
}
if (!IsMoving(0.5f) && accel.z <= -0.9f) {
++reset_counter;
if (reset_counter > 900) {
// TODO: calculate quaternion from gravity vector
quat.w = 0;
quat.xyz[0] = 0;
quat.xyz[1] = 0;
quat.xyz[2] = -1;
integral_error = {};
reset_counter = 0;
}
} else {
reset_counter = 0;
}
}
2020-08-24 03:41:59 +02:00
} // namespace InputCommon