Merge pull request #4137 from ameerj/master

GC Adapter Implementation
This commit is contained in:
bunnei 2020-07-04 10:05:59 -04:00 committed by GitHub
commit 9f8e17cb18
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 981 additions and 2 deletions

3
.gitmodules vendored
View File

@ -34,6 +34,9 @@
[submodule "xbyak"]
path = externals/xbyak
url = https://github.com/herumi/xbyak.git
[submodule "externals/libusb"]
path = externals/libusb
url = https://github.com/ameerj/libusb
[submodule "opus"]
path = externals/opus/opus
url = https://github.com/xiph/opus.git

View File

@ -329,6 +329,12 @@ elseif(SDL2_FOUND)
target_link_libraries(SDL2 INTERFACE "${SDL2_LIBRARIES}")
endif()
# Ensure libusb is properly configured (based on dolphin libusb include)
find_package(LibUSB)
add_subdirectory(externals/libusb)
set(LIBUSB_LIBRARIES usb)
# Prefer the -pthread flag on Linux.
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)

1
externals/libusb vendored Submodule

@ -0,0 +1 @@
Subproject commit 3406d72cda879f8792a88bf5f6bd0b7a65636f72

View File

@ -7,6 +7,10 @@ add_library(input_common STATIC
main.h
motion_emu.cpp
motion_emu.h
gcadapter/gc_adapter.cpp
gcadapter/gc_adapter.h
gcadapter/gc_poller.cpp
gcadapter/gc_poller.h
sdl/sdl.cpp
sdl/sdl.h
udp/client.cpp
@ -26,5 +30,7 @@ if(SDL2_FOUND)
target_compile_definitions(input_common PRIVATE HAVE_SDL2)
endif()
target_link_libraries(input_common PUBLIC ${LIBUSB_LIBRARIES})
create_target_directory_groups(input_common)
target_link_libraries(input_common PUBLIC core PRIVATE common Boost::boost)

View File

@ -0,0 +1,379 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <chrono>
#include <thread>
#include "common/logging/log.h"
#include "input_common/gcadapter/gc_adapter.h"
namespace GCAdapter {
/// Used to loop through and assign button in poller
constexpr std::array<PadButton, 12> PadButtonArray{
PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN,
PadButton::PAD_BUTTON_UP, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R,
PadButton::PAD_TRIGGER_L, PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B,
PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_START,
};
Adapter::Adapter() {
if (usb_adapter_handle != nullptr) {
return;
}
LOG_INFO(Input, "GC Adapter Initialization started");
current_status = NO_ADAPTER_DETECTED;
libusb_init(&libusb_ctx);
StartScanThread();
}
GCPadStatus Adapter::GetPadStatus(int port, const std::array<u8, 37>& adapter_payload) {
GCPadStatus pad = {};
bool get_origin = false;
ControllerTypes type = ControllerTypes(adapter_payload[1 + (9 * port)] >> 4);
if (type != ControllerTypes::None) {
get_origin = true;
}
adapter_controllers_status[port] = type;
static constexpr std::array<PadButton, 8> b1_buttons{
PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X,
PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT,
PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP,
};
static constexpr std::array<PadButton, 4> b2_buttons{
PadButton::PAD_BUTTON_START,
PadButton::PAD_TRIGGER_Z,
PadButton::PAD_TRIGGER_R,
PadButton::PAD_TRIGGER_L,
};
if (adapter_controllers_status[port] != ControllerTypes::None) {
const u8 b1 = adapter_payload[1 + (9 * port) + 1];
const u8 b2 = adapter_payload[1 + (9 * port) + 2];
for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) {
pad.button |= static_cast<u16>(b1_buttons[i]);
}
}
for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
if ((b2 & (1U << j)) != 0) {
pad.button |= static_cast<u16>(b2_buttons[j]);
}
}
if (get_origin) {
pad.button |= PAD_GET_ORIGIN;
}
pad.stick_x = adapter_payload[1 + (9 * port) + 3];
pad.stick_y = adapter_payload[1 + (9 * port) + 4];
pad.substick_x = adapter_payload[1 + (9 * port) + 5];
pad.substick_y = adapter_payload[1 + (9 * port) + 6];
pad.trigger_left = adapter_payload[1 + (9 * port) + 7];
pad.trigger_right = adapter_payload[1 + (9 * port) + 8];
}
return pad;
}
void Adapter::PadToState(const GCPadStatus& pad, GCState& state) {
for (const auto& button : PadButtonArray) {
const u16 button_value = static_cast<u16>(button);
state.buttons.insert_or_assign(button_value, pad.button & button_value);
}
state.axes.insert_or_assign(static_cast<u8>(PadAxes::StickX), pad.stick_x);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::StickY), pad.stick_y);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::SubstickX), pad.substick_x);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::SubstickY), pad.substick_y);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::TriggerLeft), pad.trigger_left);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::TriggerRight), pad.trigger_right);
}
void Adapter::Read() {
LOG_DEBUG(Input, "GC Adapter Read() thread started");
int payload_size_in, payload_size_copy;
std::array<u8, 37> adapter_payload;
std::array<u8, 37> adapter_payload_copy;
std::array<GCPadStatus, 4> pads;
while (adapter_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
sizeof(adapter_payload), &payload_size_in, 16);
payload_size_copy = 0;
// this mutex might be redundant?
{
std::lock_guard<std::mutex> lk(s_mutex);
std::copy(std::begin(adapter_payload), std::end(adapter_payload),
std::begin(adapter_payload_copy));
payload_size_copy = payload_size_in;
}
if (payload_size_copy != sizeof(adapter_payload_copy) ||
adapter_payload_copy[0] != LIBUSB_DT_HID) {
LOG_ERROR(Input, "error reading payload (size: {}, type: {:02x})", payload_size_copy,
adapter_payload_copy[0]);
adapter_thread_running = false; // error reading from adapter, stop reading.
break;
}
for (std::size_t port = 0; port < pads.size(); ++port) {
pads[port] = GetPadStatus(port, adapter_payload_copy);
if (DeviceConnected(port) && configuring) {
if (pads[port].button != PAD_GET_ORIGIN) {
pad_queue[port].Push(pads[port]);
}
// Accounting for a threshold here because of some controller variance
if (pads[port].stick_x > pads[port].MAIN_STICK_CENTER_X + pads[port].THRESHOLD ||
pads[port].stick_x < pads[port].MAIN_STICK_CENTER_X - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::StickX;
pads[port].axis_value = pads[port].stick_x;
pad_queue[port].Push(pads[port]);
}
if (pads[port].stick_y > pads[port].MAIN_STICK_CENTER_Y + pads[port].THRESHOLD ||
pads[port].stick_y < pads[port].MAIN_STICK_CENTER_Y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::StickY;
pads[port].axis_value = pads[port].stick_y;
pad_queue[port].Push(pads[port]);
}
if (pads[port].substick_x > pads[port].C_STICK_CENTER_X + pads[port].THRESHOLD ||
pads[port].substick_x < pads[port].C_STICK_CENTER_X - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickX;
pads[port].axis_value = pads[port].substick_x;
pad_queue[port].Push(pads[port]);
}
if (pads[port].substick_y > pads[port].C_STICK_CENTER_Y + pads[port].THRESHOLD ||
pads[port].substick_y < pads[port].C_STICK_CENTER_Y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickY;
pads[port].axis_value = pads[port].substick_y;
pad_queue[port].Push(pads[port]);
}
if (pads[port].trigger_left > pads[port].TRIGGER_THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::TriggerLeft;
pads[port].axis_value = pads[port].trigger_left;
pad_queue[port].Push(pads[port]);
}
if (pads[port].trigger_right > pads[port].TRIGGER_THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::TriggerRight;
pads[port].axis_value = pads[port].trigger_right;
pad_queue[port].Push(pads[port]);
}
}
PadToState(pads[port], state[port]);
}
std::this_thread::yield();
}
}
void Adapter::ScanThreadFunc() {
LOG_INFO(Input, "GC Adapter scanning thread started");
while (detect_thread_running) {
if (usb_adapter_handle == nullptr) {
std::lock_guard<std::mutex> lk(initialization_mutex);
Setup();
}
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
void Adapter::StartScanThread() {
if (detect_thread_running) {
return;
}
if (!libusb_ctx) {
return;
}
detect_thread_running = true;
detect_thread = std::thread([=] { ScanThreadFunc(); });
}
void Adapter::StopScanThread() {
detect_thread_running = false;
detect_thread.join();
}
void Adapter::Setup() {
// Reset the error status in case the adapter gets unplugged
if (current_status < 0) {
current_status = NO_ADAPTER_DETECTED;
}
adapter_controllers_status.fill(ControllerTypes::None);
// pointer to list of connected usb devices
libusb_device** devices;
// populate the list of devices, get the count
const std::size_t device_count = libusb_get_device_list(libusb_ctx, &devices);
for (std::size_t index = 0; index < device_count; ++index) {
if (CheckDeviceAccess(devices[index])) {
// GC Adapter found and accessible, registering it
GetGCEndpoint(devices[index]);
break;
}
}
}
bool Adapter::CheckDeviceAccess(libusb_device* device) {
libusb_device_descriptor desc;
const int get_descriptor_error = libusb_get_device_descriptor(device, &desc);
if (get_descriptor_error) {
// could not acquire the descriptor, no point in trying to use it.
LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: {}",
get_descriptor_error);
return false;
}
if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) {
// This isn't the device we are looking for.
return false;
}
const int open_error = libusb_open(device, &usb_adapter_handle);
if (open_error == LIBUSB_ERROR_ACCESS) {
LOG_ERROR(Input, "Yuzu can not gain access to this device: ID {:04X}:{:04X}.",
desc.idVendor, desc.idProduct);
return false;
}
if (open_error) {
LOG_ERROR(Input, "libusb_open failed to open device with error = {}", open_error);
return false;
}
int kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
if (kernel_driver_error == 1) {
kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0);
if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}",
kernel_driver_error);
}
}
if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0);
if (interface_claim_error) {
LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
return true;
}
void Adapter::GetGCEndpoint(libusb_device* device) {
libusb_config_descriptor* config = nullptr;
libusb_get_config_descriptor(device, 0, &config);
for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
const libusb_interface* interfaceContainer = &config->interface[ic];
for (int i = 0; i < interfaceContainer->num_altsetting; i++) {
const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
for (u8 e = 0; e < interface->bNumEndpoints; e++) {
const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
input_endpoint = endpoint->bEndpointAddress;
} else {
output_endpoint = endpoint->bEndpointAddress;
}
}
}
}
// This transfer seems to be responsible for clearing the state of the adapter
// Used to clear the "busy" state of when the device is unexpectedly unplugged
unsigned char clear_payload = 0x13;
libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload,
sizeof(clear_payload), nullptr, 16);
adapter_thread_running = true;
current_status = ADAPTER_DETECTED;
adapter_input_thread = std::thread([=] { Read(); }); // Read input
}
Adapter::~Adapter() {
StopScanThread();
Reset();
}
void Adapter::Reset() {
std::unique_lock<std::mutex> lock(initialization_mutex, std::defer_lock);
if (!lock.try_lock()) {
return;
}
if (current_status != ADAPTER_DETECTED) {
return;
}
if (adapter_thread_running) {
adapter_thread_running = false;
}
adapter_input_thread.join();
adapter_controllers_status.fill(ControllerTypes::None);
current_status = NO_ADAPTER_DETECTED;
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 1);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
}
if (libusb_ctx) {
libusb_exit(libusb_ctx);
}
}
bool Adapter::DeviceConnected(int port) {
return adapter_controllers_status[port] != ControllerTypes::None;
}
void Adapter::ResetDeviceType(int port) {
adapter_controllers_status[port] = ControllerTypes::None;
}
void Adapter::BeginConfiguration() {
for (auto& pq : pad_queue) {
pq.Clear();
}
configuring = true;
}
void Adapter::EndConfiguration() {
for (auto& pq : pad_queue) {
pq.Clear();
}
configuring = false;
}
std::array<Common::SPSCQueue<GCPadStatus>, 4>& Adapter::GetPadQueue() {
return pad_queue;
}
const std::array<Common::SPSCQueue<GCPadStatus>, 4>& Adapter::GetPadQueue() const {
return pad_queue;
}
std::array<GCState, 4>& Adapter::GetPadState() {
return state;
}
const std::array<GCState, 4>& Adapter::GetPadState() const {
return state;
}
} // namespace GCAdapter

View File

@ -0,0 +1,160 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <functional>
#include <mutex>
#include <thread>
#include <libusb.h>
#include "common/common_types.h"
#include "common/threadsafe_queue.h"
namespace GCAdapter {
enum {
PAD_USE_ORIGIN = 0x0080,
PAD_GET_ORIGIN = 0x2000,
PAD_ERR_STATUS = 0x8000,
};
enum class PadButton {
PAD_BUTTON_LEFT = 0x0001,
PAD_BUTTON_RIGHT = 0x0002,
PAD_BUTTON_DOWN = 0x0004,
PAD_BUTTON_UP = 0x0008,
PAD_TRIGGER_Z = 0x0010,
PAD_TRIGGER_R = 0x0020,
PAD_TRIGGER_L = 0x0040,
PAD_BUTTON_A = 0x0100,
PAD_BUTTON_B = 0x0200,
PAD_BUTTON_X = 0x0400,
PAD_BUTTON_Y = 0x0800,
PAD_BUTTON_START = 0x1000,
// Below is for compatibility with "AxisButton" type
PAD_STICK = 0x2000,
};
extern const std::array<PadButton, 12> PadButtonArray;
enum class PadAxes : u8 {
StickX,
StickY,
SubstickX,
SubstickY,
TriggerLeft,
TriggerRight,
Undefined,
};
struct GCPadStatus {
u16 button{}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
u8 stick_x{}; // 0 <= stick_x <= 255
u8 stick_y{}; // 0 <= stick_y <= 255
u8 substick_x{}; // 0 <= substick_x <= 255
u8 substick_y{}; // 0 <= substick_y <= 255
u8 trigger_left{}; // 0 <= trigger_left <= 255
u8 trigger_right{}; // 0 <= trigger_right <= 255
static constexpr u8 MAIN_STICK_CENTER_X = 0x80;
static constexpr u8 MAIN_STICK_CENTER_Y = 0x80;
static constexpr u8 MAIN_STICK_RADIUS = 0x7f;
static constexpr u8 C_STICK_CENTER_X = 0x80;
static constexpr u8 C_STICK_CENTER_Y = 0x80;
static constexpr u8 C_STICK_RADIUS = 0x7f;
static constexpr u8 THRESHOLD = 10;
// 256/4, at least a quarter press to count as a press. For polling mostly
static constexpr u8 TRIGGER_THRESHOLD = 64;
u8 port{};
PadAxes axis{PadAxes::Undefined};
u8 axis_value{255};
};
struct GCState {
std::unordered_map<int, bool> buttons;
std::unordered_map<int, u16> axes;
};
enum class ControllerTypes { None, Wired, Wireless };
enum {
NO_ADAPTER_DETECTED = 0,
ADAPTER_DETECTED = 1,
};
class Adapter {
public:
/// Initialize the GC Adapter capture and read sequence
Adapter();
/// Close the adapter read thread and release the adapter
~Adapter();
/// Used for polling
void BeginConfiguration();
void EndConfiguration();
std::array<Common::SPSCQueue<GCPadStatus>, 4>& GetPadQueue();
const std::array<Common::SPSCQueue<GCPadStatus>, 4>& GetPadQueue() const;
std::array<GCState, 4>& GetPadState();
const std::array<GCState, 4>& GetPadState() const;
private:
GCPadStatus GetPadStatus(int port, const std::array<u8, 37>& adapter_payload);
void PadToState(const GCPadStatus& pad, GCState& state);
void Read();
void ScanThreadFunc();
/// Begin scanning for the GC Adapter.
void StartScanThread();
/// Stop scanning for the adapter
void StopScanThread();
/// Returns true if there is a device connected to port
bool DeviceConnected(int port);
/// Resets status of device connected to port
void ResetDeviceType(int port);
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess(libusb_device* device);
/// Captures GC Adapter endpoint address,
void GetGCEndpoint(libusb_device* device);
/// For shutting down, clear all data, join all threads, release usb
void Reset();
/// For use in initialization, querying devices to find the adapter
void Setup();
int current_status = NO_ADAPTER_DETECTED;
libusb_device_handle* usb_adapter_handle = nullptr;
std::array<ControllerTypes, 4> adapter_controllers_status{};
std::mutex s_mutex;
std::thread adapter_input_thread;
bool adapter_thread_running;
std::mutex initialization_mutex;
std::thread detect_thread;
bool detect_thread_running = false;
libusb_context* libusb_ctx;
u8 input_endpoint = 0;
u8 output_endpoint = 0;
bool configuring = false;
std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue;
std::array<GCState, 4> state;
};
} // namespace GCAdapter

View File

@ -0,0 +1,272 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "common/threadsafe_queue.h"
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(int port_, int button_, GCAdapter::Adapter* adapter)
: port(port_), button(button_), gcadapter(adapter) {}
~GCButton() override;
bool GetStatus() const override {
return gcadapter->GetPadState()[port].buttons.at(button);
}
private:
const int port;
const int button;
GCAdapter::Adapter* gcadapter;
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_,
GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter) {
// L/R triggers range is only in positive direction beginning near 0
// 0.0 threshold equates to near half trigger press, but threshold accounts for variability.
if (axis > 3) {
threshold *= -0.5;
}
}
bool GetStatus() const override {
const float axis_value = (gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 128.0f;
if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is currently
// always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
return axis_value > threshold;
}
return axis_value < -threshold;
}
private:
const int port;
const int axis;
float threshold;
bool trigger_if_greater;
GCAdapter::Adapter* gcadapter;
};
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
GCButton::~GCButton() = default;
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
const int button_id = params.Get("button", 0);
const int port = params.Get("port", 0);
constexpr int PAD_STICK_ID = static_cast<u16>(GCAdapter::PadButton::PAD_STICK);
// button is not an axis/stick button
if (button_id != PAD_STICK_ID) {
auto button = std::make_unique<GCButton>(port, button_id, adapter.get());
return std::move(button);
}
// For Axis buttons, used by the binary sticks.
if (button_id == PAD_STICK_ID) {
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.25f);
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater,
adapter.get());
}
}
Common::ParamPackage GCButtonFactory::GetNextInput() {
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<int>(port));
for (const auto& button : GCAdapter::PadButtonArray) {
const u16 button_value = static_cast<u16>(button);
if (pad.button & button_value) {
params.Set("button", button_value);
break;
}
}
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::PAD_STICK));
if (pad.axis_value > 128) {
params.Set("direction", "+");
params.Set("threshold", "0.25");
} else {
params.Set("direction", "-");
params.Set("threshold", "-0.25");
}
break;
}
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
}
void GCButtonFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
}
class GCAnalog final : public Input::AnalogDevice {
public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter) {}
float GetAxis(int axis) const {
std::lock_guard lock{mutex};
// division is not by a perfect 128 to account for some variance in center location
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range
// [20-230]
return (gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 95.0f;
}
std::pair<float, float> GetAnalog(int axis_x, int axis_y) const {
float x = GetAxis(axis_x);
float y = GetAxis(axis_y);
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return {x, y};
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return {x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone)};
}
return {0.0f, 0.0f};
}
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.4f;
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const int port;
const int axis_x;
const int axis_y;
const float deadzone;
mutable std::mutex mutex;
GCAdapter::Adapter* gcadapter;
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
/**
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const int port = params.Get("port", 0);
const int axis_x = params.Get("axis_x", 0);
const int axis_y = params.Get("axis_y", 1);
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone, adapter.get());
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
for (std::size_t port = 0; port < queue.size(); ++port) {
while (queue[port].Pop(pad)) {
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.1) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = port;
} else if (analog_y_axis == -1 && analog_x_axis != axis && controller_number == port) {
analog_y_axis = axis;
}
}
}
Common::ParamPackage params;
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
} // namespace InputCommon

View File

@ -0,0 +1,67 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include "core/frontend/input.h"
#include "input_common/gcadapter/gc_adapter.h"
namespace InputCommon {
/**
* A button device factory representing a gcpad. It receives gcpad events and forward them
* to all button devices it created.
*/
class GCButtonFactory final : public Input::Factory<Input::ButtonDevice> {
public:
explicit GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_);
/**
* Creates a button device from a button press
* @param params contains parameters for creating the device:
* - "code": the code of the key to bind with the button
*/
std::unique_ptr<Input::ButtonDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput();
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() const {
return polling;
}
private:
std::shared_ptr<GCAdapter::Adapter> adapter;
bool polling = false;
};
/// An analog device factory that creates analog devices from GC Adapter
class GCAnalogFactory final : public Input::Factory<Input::AnalogDevice> {
public:
explicit GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_);
std::unique_ptr<Input::AnalogDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput();
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() const {
return polling;
}
private:
std::shared_ptr<GCAdapter::Adapter> adapter;
int analog_x_axis = -1;
int analog_y_axis = -1;
int controller_number = -1;
bool polling = false;
};
} // namespace InputCommon

View File

@ -4,8 +4,11 @@
#include <memory>
#include <thread>
#include <libusb.h>
#include "common/param_package.h"
#include "input_common/analog_from_button.h"
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
#include "input_common/keyboard.h"
#include "input_common/main.h"
#include "input_common/motion_emu.h"
@ -22,8 +25,16 @@ static std::shared_ptr<MotionEmu> motion_emu;
static std::unique_ptr<SDL::State> sdl;
#endif
static std::unique_ptr<CemuhookUDP::State> udp;
static std::shared_ptr<GCButtonFactory> gcbuttons;
static std::shared_ptr<GCAnalogFactory> gcanalog;
void Init() {
auto gcadapter = std::make_shared<GCAdapter::Adapter>();
gcbuttons = std::make_shared<GCButtonFactory>(gcadapter);
Input::RegisterFactory<Input::ButtonDevice>("gcpad", gcbuttons);
gcanalog = std::make_shared<GCAnalogFactory>(gcadapter);
Input::RegisterFactory<Input::AnalogDevice>("gcpad", gcanalog);
keyboard = std::make_shared<Keyboard>();
Input::RegisterFactory<Input::ButtonDevice>("keyboard", keyboard);
Input::RegisterFactory<Input::AnalogDevice>("analog_from_button",
@ -48,6 +59,11 @@ void Shutdown() {
sdl.reset();
#endif
udp.reset();
Input::UnregisterFactory<Input::ButtonDevice>("gcpad");
Input::UnregisterFactory<Input::AnalogDevice>("gcpad");
gcbuttons.reset();
gcanalog.reset();
}
Keyboard* GetKeyboard() {
@ -58,6 +74,14 @@ MotionEmu* GetMotionEmu() {
return motion_emu.get();
}
GCButtonFactory* GetGCButtons() {
return gcbuttons.get();
}
GCAnalogFactory* GetGCAnalogs() {
return gcanalog.get();
}
std::string GenerateKeyboardParam(int key_code) {
Common::ParamPackage param{
{"engine", "keyboard"},

View File

@ -7,6 +7,7 @@
#include <memory>
#include <string>
#include <vector>
#include "input_common/gcadapter/gc_poller.h"
namespace Common {
class ParamPackage;
@ -30,6 +31,10 @@ class MotionEmu;
/// Gets the motion emulation factory.
MotionEmu* GetMotionEmu();
GCButtonFactory* GetGCButtons();
GCAnalogFactory* GetGCAnalogs();
/// Generates a serialized param package for creating a keyboard button device
std::string GenerateKeyboardParam(int key_code);

View File

@ -70,6 +70,20 @@ static QString ButtonToText(const Common::ParamPackage& param) {
return GetKeyName(param.Get("code", 0));
}
if (param.Get("engine", "") == "gcpad") {
if (param.Has("axis")) {
const QString axis_str = QString::fromStdString(param.Get("axis", ""));
const QString direction_str = QString::fromStdString(param.Get("direction", ""));
return QObject::tr("GC Axis %1%2").arg(axis_str, direction_str);
}
if (param.Has("button")) {
const QString button_str = QString::number(int(std::log2(param.Get("button", 0))));
return QObject::tr("GC Button %1").arg(button_str);
}
return GetKeyName(param.Get("code", 0));
}
if (param.Get("engine", "") == "sdl") {
if (param.Has("hat")) {
const QString hat_str = QString::fromStdString(param.Get("hat", ""));
@ -126,6 +140,25 @@ static QString AnalogToText(const Common::ParamPackage& param, const std::string
return {};
}
if (param.Get("engine", "") == "gcpad") {
if (dir == "modifier") {
return QObject::tr("[unused]");
}
if (dir == "left" || dir == "right") {
const QString axis_x_str = QString::fromStdString(param.Get("axis_x", ""));
return QObject::tr("GC Axis %1").arg(axis_x_str);
}
if (dir == "up" || dir == "down") {
const QString axis_y_str = QString::fromStdString(param.Get("axis_y", ""));
return QObject::tr("GC Axis %1").arg(axis_y_str);
}
return {};
}
return QObject::tr("[unknown]");
}
@ -332,7 +365,8 @@ ConfigureInputPlayer::ConfigureInputPlayer(QWidget* parent, std::size_t player_i
connect(analog_map_deadzone_and_modifier_slider[analog_id], &QSlider::valueChanged, [=] {
const float slider_value = analog_map_deadzone_and_modifier_slider[analog_id]->value();
if (analogs_param[analog_id].Get("engine", "") == "sdl") {
if (analogs_param[analog_id].Get("engine", "") == "sdl" ||
analogs_param[analog_id].Get("engine", "") == "gcpad") {
analog_map_deadzone_and_modifier_slider_label[analog_id]->setText(
tr("Deadzone: %1%").arg(slider_value));
analogs_param[analog_id].Set("deadzone", slider_value / 100.0f);
@ -352,6 +386,20 @@ ConfigureInputPlayer::ConfigureInputPlayer(QWidget* parent, std::size_t player_i
connect(poll_timer.get(), &QTimer::timeout, [this] {
Common::ParamPackage params;
if (InputCommon::GetGCButtons()->IsPolling()) {
params = InputCommon::GetGCButtons()->GetNextInput();
if (params.Has("engine")) {
SetPollingResult(params, false);
return;
}
}
if (InputCommon::GetGCAnalogs()->IsPolling()) {
params = InputCommon::GetGCAnalogs()->GetNextInput();
if (params.Has("engine")) {
SetPollingResult(params, false);
return;
}
}
for (auto& poller : device_pollers) {
params = poller->GetNextInput();
if (params.Has("engine")) {
@ -534,7 +582,7 @@ void ConfigureInputPlayer::UpdateButtonLabels() {
analog_map_deadzone_and_modifier_slider_label[analog_id];
if (param.Has("engine")) {
if (param.Get("engine", "") == "sdl") {
if (param.Get("engine", "") == "sdl" || param.Get("engine", "") == "gcpad") {
if (!param.Has("deadzone")) {
param.Set("deadzone", 0.1f);
}
@ -583,6 +631,11 @@ void ConfigureInputPlayer::HandleClick(
grabKeyboard();
grabMouse();
if (type == InputCommon::Polling::DeviceType::Button) {
InputCommon::GetGCButtons()->BeginConfiguration();
} else {
InputCommon::GetGCAnalogs()->BeginConfiguration();
}
timeout_timer->start(5000); // Cancel after 5 seconds
poll_timer->start(200); // Check for new inputs every 200ms
}
@ -596,6 +649,9 @@ void ConfigureInputPlayer::SetPollingResult(const Common::ParamPackage& params,
poller->Stop();
}
InputCommon::GetGCButtons()->EndConfiguration();
InputCommon::GetGCAnalogs()->EndConfiguration();
if (!abort) {
(*input_setter)(params);
}