yuzu/src/tests/common/fibers.cpp

314 lines
8.4 KiB
C++

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <atomic>
#include <cstdlib>
#include <functional>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <thread>
#include <unordered_map>
#include <vector>
#include <catch2/catch.hpp>
#include "common/common_types.h"
#include "common/fiber.h"
namespace Common {
class ThreadIds {
public:
void Register(u32 id) {
const auto thread_id = std::this_thread::get_id();
std::scoped_lock lock{mutex};
if (ids.contains(thread_id)) {
throw std::logic_error{"Registering the same thread twice"};
}
ids.emplace(thread_id, id);
}
[[nodiscard]] u32 Get() const {
std::scoped_lock lock{mutex};
return ids.at(std::this_thread::get_id());
}
private:
mutable std::mutex mutex;
std::unordered_map<std::thread::id, u32> ids;
};
class TestControl1 {
public:
TestControl1() = default;
void DoWork() {
const u32 id = thread_ids.Get();
u32 value = items[id];
for (u32 i = 0; i < id; i++) {
value++;
}
results[id] = value;
Fiber::YieldTo(work_fibers[id], *thread_fibers[id]);
}
void ExecuteThread(u32 id);
ThreadIds thread_ids;
std::vector<std::shared_ptr<Common::Fiber>> thread_fibers;
std::vector<std::shared_ptr<Common::Fiber>> work_fibers;
std::vector<u32> items;
std::vector<u32> results;
};
void TestControl1::ExecuteThread(u32 id) {
thread_ids.Register(id);
auto thread_fiber = Fiber::ThreadToFiber();
thread_fibers[id] = thread_fiber;
work_fibers[id] = std::make_shared<Fiber>([this] { DoWork(); });
items[id] = rand() % 256;
Fiber::YieldTo(thread_fibers[id], *work_fibers[id]);
thread_fibers[id]->Exit();
}
/** This test checks for fiber setup configuration and validates that fibers are
* doing all the work required.
*/
TEST_CASE("Fibers::Setup", "[common]") {
constexpr std::size_t num_threads = 7;
TestControl1 test_control{};
test_control.thread_fibers.resize(num_threads);
test_control.work_fibers.resize(num_threads);
test_control.items.resize(num_threads, 0);
test_control.results.resize(num_threads, 0);
std::vector<std::thread> threads;
for (u32 i = 0; i < num_threads; i++) {
threads.emplace_back([&test_control, i] { test_control.ExecuteThread(i); });
}
for (u32 i = 0; i < num_threads; i++) {
threads[i].join();
}
for (u32 i = 0; i < num_threads; i++) {
REQUIRE(test_control.items[i] + i == test_control.results[i]);
}
}
class TestControl2 {
public:
TestControl2() = default;
void DoWork1() {
trap2 = false;
while (trap.load())
;
for (u32 i = 0; i < 12000; i++) {
value1 += i;
}
Fiber::YieldTo(fiber1, *fiber3);
const u32 id = thread_ids.Get();
assert1 = id == 1;
value2 += 5000;
Fiber::YieldTo(fiber1, *thread_fibers[id]);
}
void DoWork2() {
while (trap2.load())
;
value2 = 2000;
trap = false;
Fiber::YieldTo(fiber2, *fiber1);
assert3 = false;
}
void DoWork3() {
const u32 id = thread_ids.Get();
assert2 = id == 0;
value1 += 1000;
Fiber::YieldTo(fiber3, *thread_fibers[id]);
}
void ExecuteThread(u32 id);
void CallFiber1() {
const u32 id = thread_ids.Get();
Fiber::YieldTo(thread_fibers[id], *fiber1);
}
void CallFiber2() {
const u32 id = thread_ids.Get();
Fiber::YieldTo(thread_fibers[id], *fiber2);
}
void Exit();
bool assert1{};
bool assert2{};
bool assert3{true};
u32 value1{};
u32 value2{};
std::atomic<bool> trap{true};
std::atomic<bool> trap2{true};
ThreadIds thread_ids;
std::vector<std::shared_ptr<Common::Fiber>> thread_fibers;
std::shared_ptr<Common::Fiber> fiber1;
std::shared_ptr<Common::Fiber> fiber2;
std::shared_ptr<Common::Fiber> fiber3;
};
void TestControl2::ExecuteThread(u32 id) {
thread_ids.Register(id);
auto thread_fiber = Fiber::ThreadToFiber();
thread_fibers[id] = thread_fiber;
}
void TestControl2::Exit() {
const u32 id = thread_ids.Get();
thread_fibers[id]->Exit();
}
/** This test checks for fiber thread exchange configuration and validates that fibers are
* that a fiber has been successfully transferred from one thread to another and that the TLS
* region of the thread is kept while changing fibers.
*/
TEST_CASE("Fibers::InterExchange", "[common]") {
TestControl2 test_control{};
test_control.thread_fibers.resize(2);
test_control.fiber1 = std::make_shared<Fiber>([&test_control] { test_control.DoWork1(); });
test_control.fiber2 = std::make_shared<Fiber>([&test_control] { test_control.DoWork2(); });
test_control.fiber3 = std::make_shared<Fiber>([&test_control] { test_control.DoWork3(); });
std::thread thread1{[&test_control] {
test_control.ExecuteThread(0);
test_control.CallFiber1();
test_control.Exit();
}};
std::thread thread2{[&test_control] {
test_control.ExecuteThread(1);
test_control.CallFiber2();
test_control.Exit();
}};
thread1.join();
thread2.join();
REQUIRE(test_control.assert1);
REQUIRE(test_control.assert2);
REQUIRE(test_control.assert3);
REQUIRE(test_control.value2 == 7000);
u32 cal_value = 0;
for (u32 i = 0; i < 12000; i++) {
cal_value += i;
}
cal_value += 1000;
REQUIRE(test_control.value1 == cal_value);
}
class TestControl3 {
public:
TestControl3() = default;
void DoWork1() {
value1 += 1;
Fiber::YieldTo(fiber1, *fiber2);
const u32 id = thread_ids.Get();
value3 += 1;
Fiber::YieldTo(fiber1, *thread_fibers[id]);
}
void DoWork2() {
value2 += 1;
const u32 id = thread_ids.Get();
Fiber::YieldTo(fiber2, *thread_fibers[id]);
}
void ExecuteThread(u32 id);
void CallFiber1() {
const u32 id = thread_ids.Get();
Fiber::YieldTo(thread_fibers[id], *fiber1);
}
void Exit();
u32 value1{};
u32 value2{};
u32 value3{};
ThreadIds thread_ids;
std::vector<std::shared_ptr<Common::Fiber>> thread_fibers;
std::shared_ptr<Common::Fiber> fiber1;
std::shared_ptr<Common::Fiber> fiber2;
};
void TestControl3::ExecuteThread(u32 id) {
thread_ids.Register(id);
auto thread_fiber = Fiber::ThreadToFiber();
thread_fibers[id] = thread_fiber;
}
void TestControl3::Exit() {
const u32 id = thread_ids.Get();
thread_fibers[id]->Exit();
}
/** This test checks for one two threads racing for starting the same fiber.
* It checks execution occurred in an ordered manner and by no time there were
* two contexts at the same time.
*/
TEST_CASE("Fibers::StartRace", "[common]") {
TestControl3 test_control{};
test_control.thread_fibers.resize(2);
test_control.fiber1 = std::make_shared<Fiber>([&test_control] { test_control.DoWork1(); });
test_control.fiber2 = std::make_shared<Fiber>([&test_control] { test_control.DoWork2(); });
const auto race_function{[&test_control](u32 id) {
test_control.ExecuteThread(id);
test_control.CallFiber1();
test_control.Exit();
}};
std::thread thread1([&] { race_function(0); });
std::thread thread2([&] { race_function(1); });
thread1.join();
thread2.join();
REQUIRE(test_control.value1 == 1);
REQUIRE(test_control.value2 == 1);
REQUIRE(test_control.value3 == 1);
}
class TestControl4;
class TestControl4 {
public:
TestControl4() {
fiber1 = std::make_shared<Fiber>([this] { DoWork(); });
goal_reached = false;
rewinded = false;
}
void Execute() {
thread_fiber = Fiber::ThreadToFiber();
Fiber::YieldTo(thread_fiber, *fiber1);
thread_fiber->Exit();
}
void DoWork() {
fiber1->SetRewindPoint([this] { DoWork(); });
if (rewinded) {
goal_reached = true;
Fiber::YieldTo(fiber1, *thread_fiber);
}
rewinded = true;
fiber1->Rewind();
}
std::shared_ptr<Common::Fiber> fiber1;
std::shared_ptr<Common::Fiber> thread_fiber;
bool goal_reached;
bool rewinded;
};
TEST_CASE("Fibers::Rewind", "[common]") {
TestControl4 test_control{};
test_control.Execute();
REQUIRE(test_control.goal_reached);
REQUIRE(test_control.rewinded);
}
} // namespace Common