3
0
mirror of https://github.com/CrazyRedMachine/popnhax.git synced 2024-11-27 23:40:50 +01:00
popnhax/libdisasm/ia32_insn.c

626 lines
19 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "qword.h"
#include "ia32_insn.h"
#include "ia32_opcode_tables.h"
#include "ia32_reg.h"
#include "ia32_operand.h"
#include "ia32_implicit.h"
#include "ia32_settings.h"
#include "libdis.h"
extern ia32_table_desc_t ia32_tables[];
extern ia32_settings_t ia32_settings;
#define IS_SP( op ) (op->type == op_register && \
(op->data.reg.id == REG_ESP_INDEX || \
op->data.reg.alias == REG_ESP_INDEX) )
#define IS_IMM( op ) (op->type == op_immediate )
#ifdef WIN32
# define INLINE
#else
# define INLINE inline
#endif
/* for calculating stack modification based on an operand */
static INLINE int32_t long_from_operand( x86_op_t *op ) {
if (! IS_IMM(op) ) {
return 0L;
}
switch ( op->datatype ) {
case op_byte:
return (int32_t) op->data.sbyte;
case op_word:
return (int32_t) op->data.sword;
case op_qword:
return (int32_t) op->data.sqword;
case op_dword:
return op->data.sdword;
default:
/* these are not used in stack insn */
break;
}
return 0L;
}
/* determine what this insn does to the stack */
static void ia32_stack_mod(x86_insn_t *insn) {
x86_op_t *dest, *src = NULL;
if (! insn || ! insn->operands ) {
return;
}
dest = &insn->operands->op;
if ( dest ) {
src = &insn->operands->next->op;
}
insn->stack_mod = 0;
insn->stack_mod_val = 0;
switch ( insn->type ) {
case insn_call:
case insn_callcc:
insn->stack_mod = 1;
insn->stack_mod_val = insn->addr_size * -1;
break;
case insn_push:
insn->stack_mod = 1;
insn->stack_mod_val = insn->addr_size * -1;
break;
case insn_return:
insn->stack_mod = 1;
insn->stack_mod_val = insn->addr_size;
case insn_int: case insn_intcc:
case insn_iret:
break;
case insn_pop:
insn->stack_mod = 1;
if (! IS_SP( dest ) ) {
insn->stack_mod_val = insn->op_size;
} /* else we don't know the stack change in a pop esp */
break;
case insn_enter:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_leave:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_pushregs:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_popregs:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_pushflags:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_popflags:
insn->stack_mod = 1;
insn->stack_mod_val = 0; /* TODO : FIX */
break;
case insn_add:
if ( IS_SP( dest ) ) {
insn->stack_mod = 1;
insn->stack_mod_val = long_from_operand( src );
}
break;
case insn_sub:
if ( IS_SP( dest ) ) {
insn->stack_mod = 1;
insn->stack_mod_val = long_from_operand( src );
insn->stack_mod_val *= -1;
}
break;
case insn_inc:
if ( IS_SP( dest ) ) {
insn->stack_mod = 1;
insn->stack_mod_val = 1;
}
break;
case insn_dec:
if ( IS_SP( dest ) ) {
insn->stack_mod = 1;
insn->stack_mod_val = 1;
}
break;
case insn_mov: case insn_movcc:
case insn_xchg: case insn_xchgcc:
case insn_mul: case insn_div:
case insn_shl: case insn_shr:
case insn_rol: case insn_ror:
case insn_and: case insn_or:
case insn_not: case insn_neg:
case insn_xor:
if ( IS_SP( dest ) ) {
insn->stack_mod = 1;
}
break;
default:
break;
}
if (! strcmp("enter", insn->mnemonic) ) {
insn->stack_mod = 1;
} else if (! strcmp("leave", insn->mnemonic) ) {
insn->stack_mod = 1;
}
/* for mov, etc we return 0 -- unknown stack mod */
return;
}
/* get the cpu details for this insn from cpu flags int */
static void ia32_handle_cpu( x86_insn_t *insn, unsigned int cpu ) {
insn->cpu = (enum x86_insn_cpu) CPU_MODEL(cpu);
insn->isa = (enum x86_insn_isa) (ISA_SUBSET(cpu)) >> 16;
return;
}
/* handle mnemonic type and group */
static void ia32_handle_mnemtype(x86_insn_t *insn, unsigned int mnemtype) {
unsigned int type = mnemtype & ~INS_FLAG_MASK;
insn->group = (enum x86_insn_group) (INS_GROUP(type)) >> 12;
insn->type = (enum x86_insn_type) INS_TYPE(type);
return;
}
static void ia32_handle_notes(x86_insn_t *insn, unsigned int notes) {
insn->note = (enum x86_insn_note) notes;
return;
}
static void ia32_handle_eflags( x86_insn_t *insn, unsigned int eflags) {
unsigned int flags;
/* handle flags effected */
flags = INS_FLAGS_TEST(eflags);
/* handle weird OR cases */
/* these are either JLE (ZF | SF<>OF) or JBE (CF | ZF) */
if (flags & INS_TEST_OR) {
flags &= ~INS_TEST_OR;
if ( flags & INS_TEST_ZERO ) {
flags &= ~INS_TEST_ZERO;
if ( flags & INS_TEST_CARRY ) {
flags &= ~INS_TEST_CARRY ;
flags |= (int)insn_carry_or_zero_set;
} else if ( flags & INS_TEST_SFNEOF ) {
flags &= ~INS_TEST_SFNEOF;
flags |= (int)insn_zero_set_or_sign_ne_oflow;
}
}
}
insn->flags_tested = (enum x86_flag_status) flags;
insn->flags_set = (enum x86_flag_status) INS_FLAGS_SET(eflags) >> 16;
return;
}
static void ia32_handle_prefix( x86_insn_t *insn, unsigned int prefixes ) {
insn->prefix = (enum x86_insn_prefix) prefixes & PREFIX_MASK; // >> 20;
if (! (insn->prefix & PREFIX_PRINT_MASK) ) {
/* no printable prefixes */
insn->prefix = insn_no_prefix;
}
/* concat all prefix strings */
if ( (unsigned int)insn->prefix & PREFIX_LOCK ) {
strncat(insn->prefix_string, "lock ", 32 -
strlen(insn->prefix_string));
}
if ( (unsigned int)insn->prefix & PREFIX_REPNZ ) {
strncat(insn->prefix_string, "repnz ", 32 -
strlen(insn->prefix_string));
} else if ( (unsigned int)insn->prefix & PREFIX_REPZ ) {
strncat(insn->prefix_string, "repz ", 32 -
strlen(insn->prefix_string));
}
return;
}
static void reg_32_to_16( x86_op_t *op, x86_insn_t *insn, void *arg ) {
/* if this is a 32-bit register and it is a general register ... */
if ( op->type == op_register && op->data.reg.size == 4 &&
(op->data.reg.type & reg_gen) ) {
/* WORD registers are 8 indices off from DWORD registers */
ia32_handle_register( &(op->data.reg),
op->data.reg.id + 8 );
}
}
static void handle_insn_metadata( x86_insn_t *insn, ia32_insn_t *raw_insn ) {
ia32_handle_mnemtype( insn, raw_insn->mnem_flag );
ia32_handle_notes( insn, raw_insn->notes );
ia32_handle_eflags( insn, raw_insn->flags_effected );
ia32_handle_cpu( insn, raw_insn->cpu );
ia32_stack_mod( insn );
}
static size_t ia32_decode_insn( unsigned char *buf, size_t buf_len,
ia32_insn_t *raw_insn, x86_insn_t *insn,
unsigned int prefixes ) {
size_t size, op_size;
unsigned char modrm;
/* this should never happen, but just in case... */
if ( raw_insn->mnem_flag == INS_INVALID ) {
return 0;
}
if (ia32_settings.options & opt_16_bit) {
insn->op_size = ( prefixes & PREFIX_OP_SIZE ) ? 4 : 2;
insn->addr_size = ( prefixes & PREFIX_ADDR_SIZE ) ? 4 : 2;
} else {
insn->op_size = ( prefixes & PREFIX_OP_SIZE ) ? 2 : 4;
insn->addr_size = ( prefixes & PREFIX_ADDR_SIZE ) ? 2 : 4;
}
/* ++++ 1. Copy mnemonic and mnemonic-flags to CODE struct */
if ((ia32_settings.options & opt_att_mnemonics) && raw_insn->mnemonic_att[0]) {
strncpy( insn->mnemonic, raw_insn->mnemonic_att, 16 );
}
else {
strncpy( insn->mnemonic, raw_insn->mnemonic, 16 );
}
ia32_handle_prefix( insn, prefixes );
handle_insn_metadata( insn, raw_insn );
/* prefetch the next byte in case it is a modr/m byte -- saves
* worrying about whether the 'mod/rm' operand or the 'reg' operand
* occurs first */
modrm = GET_BYTE( buf, buf_len );
/* ++++ 2. Decode Explicit Operands */
/* Intel uses up to 3 explicit operands in its instructions;
* the first is 'dest', the second is 'src', and the third
* is an additional source value (usually an immediate value,
* e.g. in the MUL instructions). These three explicit operands
* are encoded in the opcode tables, even if they are not used
* by the instruction. Additional implicit operands are stored
* in a supplemental table and are handled later. */
op_size = ia32_decode_operand( buf, buf_len, insn, raw_insn->dest,
raw_insn->dest_flag, prefixes, modrm );
/* advance buffer, increase size if necessary */
buf += op_size;
buf_len -= op_size;
size = op_size;
op_size = ia32_decode_operand( buf, buf_len, insn, raw_insn->src,
raw_insn->src_flag, prefixes, modrm );
buf += op_size;
buf_len -= op_size;
size += op_size;
op_size = ia32_decode_operand( buf, buf_len, insn, raw_insn->aux,
raw_insn->aux_flag, prefixes, modrm );
size += op_size;
/* ++++ 3. Decode Implicit Operands */
/* apply implicit operands */
ia32_insn_implicit_ops( insn, raw_insn->implicit_ops );
/* we have one small inelegant hack here, to deal with
* the two prefixes that have implicit operands. If Intel
* adds more, we'll change the algorithm to suit :) */
if ( (prefixes & PREFIX_REPZ) || (prefixes & PREFIX_REPNZ) ) {
ia32_insn_implicit_ops( insn, IDX_IMPLICIT_REP );
}
/* 16-bit hack: foreach operand, if 32-bit reg, make 16-bit reg */
if ( insn->op_size == 2 ) {
x86_operand_foreach( insn, reg_32_to_16, NULL, op_any );
}
return size;
}
/* convenience routine */
#define USES_MOD_RM(flag) \
(flag == ADDRMETH_E || flag == ADDRMETH_M || flag == ADDRMETH_Q || \
flag == ADDRMETH_W || flag == ADDRMETH_R)
static int uses_modrm_flag( unsigned int flag ) {
unsigned int meth;
if ( flag == ARG_NONE ) {
return 0;
}
meth = (flag & ADDRMETH_MASK);
if ( USES_MOD_RM(meth) ) {
return 1;
}
return 0;
}
/* This routine performs the actual byte-by-byte opcode table lookup.
* Originally it was pretty simple: get a byte, adjust it to a proper
* index into the table, then check the table row at that index to
* determine what to do next. But is anything that simple with Intel?
* This is now a huge, convoluted mess, mostly of bitter comments. */
/* buf: pointer to next byte to read from stream
* buf_len: length of buf
* table: index of table to use for lookups
* raw_insn: output pointer that receives opcode definition
* prefixes: output integer that is encoded with prefixes in insn
* returns : number of bytes consumed from stream during lookup */
size_t ia32_table_lookup( unsigned char *buf, size_t buf_len,
unsigned int table, ia32_insn_t **raw_insn,
unsigned int *prefixes ) {
unsigned char *next, op = buf[0]; /* byte value -- 'opcode' */
size_t size = 1, sub_size = 0, next_len;
ia32_table_desc_t *table_desc;
unsigned int subtable, prefix = 0, recurse_table = 0;
table_desc = &ia32_tables[table];
op = GET_BYTE( buf, buf_len );
if ( table_desc->type == tbl_fpu && op > table_desc->maxlim) {
/* one of the fucking FPU tables out of the 00-BH range */
/* OK,. this is a bit of a hack -- the proper way would
* have been to use subtables in the 00-BF FPU opcode tables,
* but that is rather wasteful of space... */
table_desc = &ia32_tables[table +1];
}
/* PERFORM TABLE LOOKUP */
/* ModR/M trick: shift extension bits into lowest bits of byte */
/* Note: non-ModR/M tables have a shift value of 0 */
op >>= table_desc->shift;
/* ModR/M trick: mask out high bits to turn extension into an index */
/* Note: non-ModR/M tables have a mask value of 0xFF */
op &= table_desc->mask;
/* Sparse table trick: check that byte is <= max value */
/* Note: full (256-entry) tables have a maxlim of 155 */
if ( op > table_desc->maxlim ) {
/* this is a partial table, truncated at the tail,
and op is out of range! */
return INVALID_INSN;
}
/* Sparse table trick: check that byte is >= min value */
/* Note: full (256-entry) tables have a minlim of 0 */
if ( table_desc->minlim > op ) {
/* this is a partial table, truncated at the head,
and op is out of range! */
return INVALID_INSN;
}
/* adjust op to be an offset from table index 0 */
op -= table_desc->minlim;
/* Yay! 'op' is now fully adjusted to be an index into 'table' */
*raw_insn = &(table_desc->table[op]);
//printf("BYTE %X TABLE %d OP %X\n", buf[0], table, op );
if ( (*raw_insn)->mnem_flag & INS_FLAG_PREFIX ) {
prefix = (*raw_insn)->mnem_flag & PREFIX_MASK;
}
/* handle escape to a multibyte/coproc/extension/etc table */
/* NOTE: if insn is a prefix and has a subtable, then we
* only recurse if this is the first prefix byte --
* that is, if *prefixes is 0.
* NOTE also that suffix tables are handled later */
subtable = (*raw_insn)->table;
if ( subtable && ia32_tables[subtable].type != tbl_suffix &&
(! prefix || ! *prefixes) ) {
if ( ia32_tables[subtable].type == tbl_ext_ext ||
ia32_tables[subtable].type == tbl_fpu_ext ) {
/* opcode extension: reuse current byte in buffer */
next = buf;
next_len = buf_len;
} else {
/* "normal" opcode: advance to next byte in buffer */
if ( buf_len > 1 ) {
next = &buf[1];
next_len = buf_len - 1;
}
else {
// buffer is truncated
return INVALID_INSN;
}
}
/* we encountered a multibyte opcode: recurse using the
* table specified in the opcode definition */
sub_size = ia32_table_lookup( next, next_len, subtable,
raw_insn, prefixes );
/* SSE/prefix hack: if the original opcode def was a
* prefix that specified a subtable, and the subtable
* lookup returned a valid insn, then we have encountered
* an SSE opcode definition; otherwise, we pretend we
* never did the subtable lookup, and deal with the
* prefix normally later */
if ( prefix && ( sub_size == INVALID_INSN ||
INS_TYPE((*raw_insn)->mnem_flag) == INS_INVALID ) ) {
/* this is a prefix, not an SSE insn :
* lookup next byte in main table,
* subsize will be reset during the
* main table lookup */
recurse_table = 1;
} else {
/* this is either a subtable (two-byte) insn
* or an invalid insn: either way, set prefix
* to NULL and end the opcode lookup */
prefix = 0;
// short-circuit lookup on invalid insn
if (sub_size == INVALID_INSN) return INVALID_INSN;
}
} else if ( prefix ) {
recurse_table = 1;
}
/* by default, we assume that we have the opcode definition,
* and there is no need to recurse on the same table, but
* if we do then a prefix was encountered... */
if ( recurse_table ) {
/* this must have been a prefix: use the same table for
* lookup of the next byte */
sub_size = ia32_table_lookup( &buf[1], buf_len - 1, table,
raw_insn, prefixes );
// short-circuit lookup on invalid insn
if (sub_size == INVALID_INSN) return INVALID_INSN;
/* a bit of a hack for branch hints */
if ( prefix & BRANCH_HINT_MASK ) {
if ( INS_GROUP((*raw_insn)->mnem_flag) == INS_EXEC ) {
/* segment override prefixes are invalid for
* all branch instructions, so delete them */
prefix &= ~PREFIX_REG_MASK;
} else {
prefix &= ~BRANCH_HINT_MASK;
}
}
/* apply prefix to instruction */
/* TODO: implement something enforcing prefix groups */
(*prefixes) |= prefix;
}
/* if this lookup was in a ModR/M table, then an opcode byte is
* NOT consumed: subtract accordingly. NOTE that if none of the
* operands used the ModR/M, then we need to consume the byte
* here, but ONLY in the 'top-level' opcode extension table */
if ( table_desc->type == tbl_ext_ext ) {
/* extensions-to-extensions never consume a byte */
--size;
} else if ( (table_desc->type == tbl_extension ||
table_desc->type == tbl_fpu ||
table_desc->type == tbl_fpu_ext ) &&
/* extensions that have an operand encoded in ModR/M
* never consume a byte */
(uses_modrm_flag((*raw_insn)->dest_flag) ||
uses_modrm_flag((*raw_insn)->src_flag) ) ) {
--size;
}
size += sub_size;
return size;
}
static size_t handle_insn_suffix( unsigned char *buf, size_t buf_len,
ia32_insn_t *raw_insn, x86_insn_t * insn ) {
ia32_table_desc_t *table_desc;
ia32_insn_t *sfx_insn;
size_t size;
unsigned int prefixes = 0;
table_desc = &ia32_tables[raw_insn->table];
size = ia32_table_lookup( buf, buf_len, raw_insn->table, &sfx_insn,
&prefixes );
if (size == INVALID_INSN || sfx_insn->mnem_flag == INS_INVALID ) {
return 0;
}
strncpy( insn->mnemonic, sfx_insn->mnemonic, 16 );
handle_insn_metadata( insn, sfx_insn );
return 1;
}
/* invalid instructions are handled by returning 0 [error] from the
* function, setting the size of the insn to 1 byte, and copying
* the byte at the start of the invalid insn into the x86_insn_t.
* if the caller is saving the x86_insn_t for invalid instructions,
* instead of discarding them, this will maintain a consistent
* address space in the x86_insn_ts */
/* this function is called by the controlling disassembler, so its name and
* calling convention cannot be changed */
/* buf points to the loc of the current opcode (start of the
* instruction) in the instruction stream. The instruction
* stream is assumed to be a buffer of bytes read directly
* from the file for the purpose of disassembly; a mem-mapped
* file is ideal for * this.
* insn points to a code structure to be filled by instr_decode
* returns the size of the decoded instruction in bytes */
size_t ia32_disasm_addr( unsigned char * buf, size_t buf_len,
x86_insn_t *insn ) {
ia32_insn_t *raw_insn = NULL;
unsigned int prefixes = 0;
size_t size, sfx_size;
if ( (ia32_settings.options & opt_ignore_nulls) && buf_len > 3 &&
!buf[0] && !buf[1] && !buf[2] && !buf[3]) {
/* IF IGNORE_NULLS is set AND
* first 4 bytes in the intruction stream are NULL
* THEN return 0 (END_OF_DISASSEMBLY) */
/* TODO: set errno */
MAKE_INVALID( insn, buf );
return 0; /* 4 00 bytes in a row? This isn't code! */
}
/* Perform recursive table lookup starting with main table (0) */
size = ia32_table_lookup(buf, buf_len, idx_Main, &raw_insn, &prefixes);
if ( size == INVALID_INSN || size > buf_len || raw_insn->mnem_flag == INS_INVALID ) {
MAKE_INVALID( insn, buf );
/* TODO: set errno */
return 0;
}
/* We now have the opcode itself figured out: we can decode
* the rest of the instruction. */
size += ia32_decode_insn( &buf[size], buf_len - size, raw_insn, insn,
prefixes );
if ( raw_insn->mnem_flag & INS_FLAG_SUFFIX ) {
/* AMD 3DNow! suffix -- get proper operand type here */
sfx_size = handle_insn_suffix( &buf[size], buf_len - size,
raw_insn, insn );
if (! sfx_size ) {
/* TODO: set errno */
MAKE_INVALID( insn, buf );
return 0;
}
size += sfx_size;
}
if (! size ) {
/* invalid insn */
MAKE_INVALID( insn, buf );
return 0;
}
insn->size = size;
return size; /* return size of instruction in bytes */
}