Taiko-Nijiiro-Analog-IOBoard/sanro/sanro.ino
2016-03-24 21:46:45 +08:00

129 lines
4.0 KiB
C++

/***************************************************************
* *
* Taiko Sanro - Arduino *
* Support Arduino models with ATmega32u4 microprocessors *
* *
* Copyright © 2016 Shiky Chang *
* zhangxunpx@gmail.com *
* *
***************************************************************/
#define MODE_JIRO 1
#define CHANNELS 4
// Input delay ~ (SAMPLE_CACHE_LENGTH + POWER_CACHE_LENGTH) / sample frequency
// _CACHE_LENGTH must be less than 256
#define SAMPLE_CACHE_LENGTH 150
#define POWER_CACHE_LENGTH 3
// _THRES must be less than 2^32 = 4294967296 = 4.29e9
#define LIGHT_THRES 2500000
#define HEAVY_THRES 5000000
#include <Keyboard.h>
int channelSample [CHANNELS];
int lastChannelSample [CHANNELS];
int sampleCache [CHANNELS][SAMPLE_CACHE_LENGTH];
short int sampleCacheIndex [CHANNELS];
long int power [CHANNELS];
long int powerCache [CHANNELS][POWER_CACHE_LENGTH];
short int powerCacheIndex [CHANNELS];
bool triggered [CHANNELS];
void setup() {
Serial.begin (9600);
Keyboard.begin ();
analogReference (DEFAULT);
for (short int i = 0; i < CHANNELS; i++) {
for (short int j = 0; j < SAMPLE_CACHE_LENGTH; j++) {
sampleCache [i][j] = 0;
}
sampleCacheIndex [i] = SAMPLE_CACHE_LENGTH - 1;
for (short int j = 0; j < POWER_CACHE_LENGTH; j++) {
powerCache [i][j] = 0;
}
powerCacheIndex [i] = POWER_CACHE_LENGTH - 1;
power [i] = 0;
lastChannelSample [i] = 0;
triggered [i] = false;
}
}
void loop() {
// Analog input: 0~5V -> 0~1023
channelSample[0] = analogRead (A0); // L don
channelSample[1] = analogRead (A1); // R don
channelSample[2] = analogRead (A2); // L kat
channelSample[3] = analogRead (A3); // R kat
for (short int i = 0; i < CHANNELS; i++) {
sampleCacheIndex [i] = (sampleCacheIndex [i] + 1) % SAMPLE_CACHE_LENGTH;
sampleCache [i][sampleCacheIndex [i]] = channelSample [i] - lastChannelSample [i];
long int tempInt;
tempInt = sampleCache [i][(sampleCacheIndex [i] + 1) % SAMPLE_CACHE_LENGTH];
power [i] -= tempInt * tempInt;
tempInt = sampleCache [i][sampleCacheIndex [i]];
power [i] += tempInt * tempInt;
if (power [i] < LIGHT_THRES) {
power [i] = 0;
}
powerCacheIndex [i] = (powerCacheIndex [i] + 1 ) % POWER_CACHE_LENGTH;
powerCache [i][powerCacheIndex [i]] = power [i];
lastChannelSample [i] = channelSample [i];
for (short int j = 0; j < POWER_CACHE_LENGTH - 1; j++){
if (!triggered) {
if (powerCache [i][(powerCacheIndex [i] + j + 1) % POWER_CACHE_LENGTH] > powerCache [i][(powerCacheIndex [i] + j) % POWER_CACHE_LENGTH] || j != POWER_CACHE_LENGTH - 2) {
break;
} else {
#if MODE_JIRO
if (power [i] >= LIGHT_THRES) {
triggered [i] = true;
switch (i) {
case 0: Keyboard.print ('g'); break;
case 1: Keyboard.print ('h'); break;
case 2: Keyboard.print ('f'); break;
case 3: Keyboard.print ('j'); break;
}
}
#else
if (power [i] >= HEAVY_THRES) {
triggered [i] = true;
switch (i) {
case 0: Keyboard.print ('t'); break;
case 1: Keyboard.print ('y'); break;
case 2: Keyboard.print ('r'); break;
case 3: Keyboard.print ('u'); break;
}
} else if (power [i] >= LIGHT_THRES) {
triggered [i] = true;
switch (i) {
case 0: Keyboard.print ('g'); break;
case 1: Keyboard.print ('h'); break;
case 2: Keyboard.print ('f'); break;
case 3: Keyboard.print ('j'); break;
}
}
#endif
}
}
}
// This is the end of each channel
}
delay (1);
}