* SpeedyPotato, for his great SDVX pico project which inspired me in the first place. I also got many materials from his repo. Check out his great projects: https://github.com/speedypotato.
* CrazyRedMachine, I got panel arts from his SVG files: https://github.com/CrazyRedMachine/PopnPanel.
* Many respectful guys/companies who made their tools or materials free or open source (KiCad, OpenSCAD, InkScape, Raspberry things).
* Place order at jlcpcb.com for PCB and plate. Gerber zip files are **/PRODUCTION/PCB.zip** and **/PRODUCTION/PLATE.zip**. Leave everything default in JLC's ordering page (board thickness is 1.6mm). Choose what ever color you like, I prefer white.
* Order 3D printing service for the case, FDM with transparent PETG filament or SLA with half-transparent resin. If you own a 3D printer, do it yourself. The file is **/PRODUCTION/pico_popn_case.stl**.
* Put flux on all those small pins. Melt a tiny little bit solder (seriously very very little bit) at the iron tip. Then quickly solder the pins. Flux and very little bit solder is the key.
* Use a USB cable to connect the PCB to a PC/Mac computer while pressing down the small button on Raspberry Pi Pico. An explorer window will pop up. If it doesn't show up, navigate to a disk labeled "RPI-RP2".
* Drag the UF2 file (**/PRODUCTION/pico_popn.uf2**) to the root of this new disk.
* The RGB lights will start rainbow effects.
* If it's not working, go back to Step 2 and fix it.
### Step 4 - Assembly
* Insert 9 key switches into the plate, be careful, don't bend the leads.
<imgsrc="doc/switch_installed.jpg"width="30%">
* Put the PCB into the case.
* Gap between the plate and the PCB is about 3.4mm. There're many ways to fix and fasten boards and case. Here's my solution, I reprocessed the screws and spacers as they didn't come with proper length.
* Another way is to use a long M3 screw from top side and a nut at the bottom side. Between PCB and plate, use a 3.5mm length M3 spacer with no threads. You can also 3D print some spacers using provided **/PRODUCTION/screw_spacer.stl**.
* 3D file is **/PRODUCTION/popn_keycap.stl** or if you're using Chitubox - **/PRODUCTION/popn_keycaps.chitubox**. Orientation and support should be like this to get perfect button surface.
In the first version of main PCB (v1.1 and earlier) I chose a wrong GPIO for the button 9 LED which caused a PWM conflict. To support brightness and fading control, that must be fixed.
The idea is to cut the old LED 9 track and wire it to a different pin (GPIO18). The blue * mark in the picture means "to cut the track" and the red * mark means "to solder".
If you don't need brightness and fading control, you don't need make this modification, just use v1.1 firmware.