1
0
mirror of synced 2024-12-20 11:35:54 +01:00
ImHex/plugins/visualizers/source/content/pl_visualizers/3d_model.cpp
paxcut fa28052958
fix: Avoid crashing ImHex when passing invalid data to the 3D visualizer (#1874)
### Problem description
There are some obvious constrains in the various array data sizes that
we can use to determine if their sizes and in some cases their values
are correct.

### Implementation description
To test their validity, the most important of the various arrays are the
indices, so their definition and use has been simplified a great deal.
In order to treat all variables in a similar manner the changes to the
uv variable posted in an earlier PR were also added here.

With this one, all the recently opened PR's combined should contain
exactly the same changes and fixes as the older 3-d visualizer PR #1850
which I will close shortly after this one is opened.

---------

Co-authored-by: Nik <werwolv98@gmail.com>
2024-09-15 15:19:41 +02:00

926 lines
38 KiB
C++

#include <algorithm>
#include <hex/helpers/utils.hpp>
#include <content/visualizer_helpers.hpp>
#include <fonts/codicons_font.h>
#include <fonts/blendericons_font.h>
#include <imgui.h>
#include <imgui_internal.h>
#include <hex/helpers/opengl.hpp>
#include <opengl_support.h>
#include <numbers>
#include <hex/ui/imgui_imhex_extensions.h>
#include <hex/api/imhex_api.hpp>
#include <hex/api/localization_manager.hpp>
#include <romfs/romfs.hpp>
#include <numeric>
namespace hex::plugin::visualizers {
namespace {
enum class IndexType : u8 {
U8,
U16,
U32,
Undefined,
};
template<class T>
struct Vectors {
std::vector<float> vertices;
std::vector<float> normals;
std::vector<float> colors;
std::vector<float> uv;
std::vector<T> indices;
};
template <class T>
struct LineVectors {
std::vector<float> vertices;
std::vector<float> colors;
std::vector<T> indices;
};
template<class T>
struct Buffers {
gl::Buffer<float> vertices;
gl::Buffer<float> normals;
gl::Buffer<float> colors;
gl::Buffer<float> uv;
gl::Buffer<T> indices;
};
template<class T>
struct LineBuffers {
gl::Buffer<float> vertices;
gl::Buffer<float> colors;
gl::Buffer<T> indices;
};
ImVec2 s_renderingWindowSize;
int s_drawMode = GL_TRIANGLES;
float s_nearLimit = 0.9F;
float s_farLimit = 100.0F;
float s_scaling = 1.0F;
float s_max;
bool s_isPerspective = true;
bool s_drawAxes = true;
bool s_drawGrid = true;
bool s_drawLightSource = true;
bool s_drawTexture = false;
bool s_shouldReset = false;
bool s_shouldUpdateLightSource = true;
bool s_shouldUpdateTexture = false;
std::vector<u32> s_badIndices;
IndexType s_indexType;
ImGuiExt::Texture s_modelTexture;
gl::Vector<float, 3> s_translation = { { 0.0F, 0.0F, -3.0F } };
gl::Vector<float, 3> s_rotation = { { 0.0F, 0.0F, 0.0F } };
gl::Vector<float, 3> s_lightPosition = { { -0.7F, 0.0F, 0.0F } };
gl::Vector<float, 4> s_lightBrightness = { { 0.5F, 0.5F, 0.5F, 32.0F } };
gl::Vector<float, 3> s_lightColor = { { 1.0F, 1.0F, 1.0F } };
gl::Matrix<float, 4, 4> s_rotate = gl::Matrix<float, 4, 4>::identity();
ImGuiExt::Texture s_texture;
std::fs::path s_texturePath;
u32 s_vertexCount;
const auto isIndexInRange = [](auto index) {
if (index >= s_vertexCount)
s_badIndices.push_back(index);
return index < s_vertexCount;
};
template<typename T>
void indicesForLines(std::vector<T> &vertexIndices) {
std::vector<u32> indices;
u32 vertexCount = vertexIndices.size() / 3;
indices.resize(vertexCount * 6);
for (u32 i = 0; i < vertexCount; i += 1) {
indices[i * 6] = vertexIndices[3 * i];
indices[(i * 6) + 1] = vertexIndices[(3 * i) + 1];
indices[(i * 6) + 2] = vertexIndices[(3 * i) + 1];
indices[(i * 6) + 3] = vertexIndices[(3 * i) + 2];
indices[(i * 6) + 4] = vertexIndices[(3 * i) + 2];
indices[(i * 6) + 5] = vertexIndices[3 * i];
}
vertexIndices.resize(indices.size());
for (u32 i = 0; i < indices.size(); ++i)
vertexIndices[i] = indices[i];
}
float getBoundingBox(const std::vector<float> &vertices) {
gl::Vector<float, 4> minWorld(std::numeric_limits<float>::infinity()), maxWorld(-std::numeric_limits<float>::infinity());
for (u32 i = 0; i < vertices.size(); i += 3) {
minWorld[0] = std::min(vertices[i], minWorld[0]);
minWorld[1] = std::min(vertices[i + 1], minWorld[1]);
minWorld[2] = std::min(vertices[i + 2], minWorld[2]);
maxWorld[0] = std::max(vertices[i], maxWorld[0]);
maxWorld[1] = std::max(vertices[i + 1], maxWorld[1]);
maxWorld[2] = std::max(vertices[i + 2], maxWorld[2]);
}
minWorld[3] = 1;
maxWorld[3] = 1;
gl::Vector<float, 4> minCamera = minWorld, maxCamera = maxWorld;
if (maxCamera[3] != 0)
maxCamera = maxCamera * (1.0F / maxCamera[3]);
if (minCamera[3] != 0)
minCamera = minCamera * (1.0F / minCamera[3]);
float max_X = std::max(std::fabs(minCamera[0]), std::fabs(maxCamera[0]));
float max_Y = std::max(std::fabs(minCamera[1]), std::fabs(maxCamera[1]));
return std::max(max_X, max_Y);
}
void setDefaultUVs(std::vector<float> &uv, size_t size) {
uv.resize(size / 3 * 2);
for (u32 i = 0; i < uv.size(); i += 2) {
uv[i ] = 0.0F;
uv[i + 1] = 0.0F;
}
}
void setDefaultColors(std::vector<float> &colors, size_t size, u32 color) {
colors.resize(size / 3 * 4);
float red = float((color >> 0) & 0xFF) / 255.0F;
float green = float((color >> 8) & 0xFF) / 255.0F;
float blue = float((color >> 16) & 0xFF) / 255.0F;
float alpha = float((color >> 24) & 0xFF) / 255.0F;
for (u32 i = 0; i < colors.size(); i += 4) {
colors[i] = red;
colors[i + 1] = green;
colors[i + 2] = blue;
colors[i + 3] = alpha;
}
}
void setNormals(const std::vector<float> &vertices, std::vector<float> &normals) {
for (u32 i = 0; i < normals.size(); i += 9) {
auto v1 = gl::Vector<float, 3>({vertices[i], vertices[i + 1], vertices[i + 2]});
auto v2 = gl::Vector<float, 3>({vertices[i + 3], vertices[i + 4], vertices[i + 5]});
auto v3 = gl::Vector<float, 3>({vertices[i + 6], vertices[i + 7], vertices[i + 8]});
auto normal = ((v2 - v1).cross(v3 - v1));
normals[i] += normal[0];
normals[i + 1] += normal[1];
normals[i + 2] += normal[2];
normals[i + 3] += normal[0];
normals[i + 4] += normal[1];
normals[i + 5] += normal[2];
normals[i + 6] += normal[0];
normals[i + 7] += normal[1];
normals[i + 8] += normal[2];
}
for (u32 i = 0; i < normals.size(); i += 3) {
auto normal = gl::Vector<float, 3>({normals[i], normals[i + 1], normals[i + 2]});
normal.normalize();
normals[i] = normal[0];
normals[i + 1] = normal[1];
normals[i + 2] = normal[2];
}
}
void setNormalsWithIndices(const std::vector<float> &vertices, std::vector<float> &normals, const std::vector<u32> &indices) {
for (u32 i = 0; i < indices.size(); i += 3) {
auto idx = indices[i];
auto idx1 = indices[i + 1];
auto idx2 = indices[i + 2];
auto v1 = gl::Vector<float, 3>({vertices[3 * idx], vertices[(3 * idx) + 1], vertices[(3 * idx) + 2]});
auto v2 = gl::Vector<float, 3>(
{vertices[3 * idx1], vertices[(3 * idx1) + 1], vertices[(3 * idx1) + 2]});
auto v3 = gl::Vector<float, 3>(
{vertices[3 * idx2], vertices[(3 * idx2) + 1], vertices[(3 * idx2) + 2]});
auto weighted = ((v2 - v1).cross(v3 - v1));
normals[3 * idx] += weighted[0];
normals[(3 * idx) + 1] += weighted[1];
normals[(3 * idx) + 2] += weighted[2];
normals[(3 * idx1)] += weighted[0];
normals[(3 * idx1) + 1] += weighted[1];
normals[(3 * idx1) + 2] += weighted[2];
normals[(3 * idx2)] += weighted[0];
normals[(3 * idx2) + 1] += weighted[1];
normals[(3 * idx2) + 2] += weighted[2];
}
for (u32 i = 0; i < normals.size(); i += 3) {
auto normal = gl::Vector<float, 3>({normals[i], normals[i + 1], normals[i + 2]});
auto mag = normal.magnitude();
if (mag > 0.001F) {
normals[i] = normal[0] / mag;
normals[i + 1] = normal[1] / mag;
normals[i + 2] = normal[2] / mag;
}
}
}
template<class T>
void loadVectors(Vectors<T> &vectors, IndexType indexType) {
s_max = getBoundingBox(vectors.vertices);
if (s_drawTexture)
setDefaultColors(vectors.colors, vectors.vertices.size(), 0x00000000);
else if (vectors.colors.empty())
setDefaultColors(vectors.colors, vectors.vertices.size(), 0xFF337FFF);
if (vectors.uv.empty())
setDefaultUVs(vectors.uv, vectors.vertices.size());
if (vectors.normals.empty()) {
vectors.normals.resize(vectors.vertices.size());
if (vectors.indices.empty() || (indexType == IndexType::Undefined)) {
setNormals(vectors.vertices, vectors.normals);
} else {
std::vector<u32> indices;
indices.resize(vectors.indices.size());
for (u32 i = 0; i < vectors.indices.size(); i += 1)
indices[i] = vectors.indices[i];
setNormalsWithIndices(vectors.vertices, vectors.normals, indices);
}
}
}
template<class T>
void loadLineVectors(LineVectors<T> &lineVectors, IndexType indexType) {
s_max = getBoundingBox(lineVectors.vertices);
if (lineVectors.colors.empty())
setDefaultColors(lineVectors.colors, lineVectors.vertices.size(), 0xFF337FFF);
if (indexType != IndexType::Undefined)
indicesForLines(lineVectors.indices);
}
void processKeyEvent(ImGuiKey key, float &variable, float increment, float acceleration) {
if (ImGui::IsKeyPressed(key)) {
auto temp = variable + (increment * acceleration);
if (variable * temp < 0.0F)
variable = 0.0F;
else
variable = temp;
}
}
void processInputEvents(gl::Vector<float, 3> &rotation, gl::Vector<float, 3> &translation, float &scaling, float &nearLimit, float &farLimit) {
auto accel = 1.0F;
if (ImGui::IsKeyDown(ImGuiKey_LeftShift) ||
ImGui::IsKeyDown(ImGuiKey_RightShift))
accel = 10.0F;
auto dragDelta = ImGui::GetMouseDragDelta(ImGuiMouseButton_Middle);
if (dragDelta.x != 0) {
rotation[1] += dragDelta.x * 0.0075F * accel;
}
if (dragDelta.y != 0) {
rotation[0] += dragDelta.y * 0.0075F * accel;
}
ImGui::ResetMouseDragDelta(ImGuiMouseButton_Middle);
dragDelta = ImGui::GetMouseDragDelta(ImGuiMouseButton_Right);
translation[0] += dragDelta.x * 0.0075F * accel;
translation[1] -= dragDelta.y * 0.0075F * accel;
ImGui::ResetMouseDragDelta(ImGuiMouseButton_Right);
auto scrollDelta = ImGui::GetIO().MouseWheel;
scaling += scrollDelta * 0.1F * accel;
scaling = std::max(scaling, 0.01F);
processKeyEvent(ImGuiKey_Keypad4, translation[0], -0.1F, accel);
processKeyEvent(ImGuiKey_Keypad6, translation[0], 0.1F, accel);
processKeyEvent(ImGuiKey_Keypad8, translation[1], 0.1F, accel);
processKeyEvent(ImGuiKey_Keypad2, translation[1], -0.1F, accel);
processKeyEvent(ImGuiKey_Keypad1, translation[2], 0.1F, accel);
processKeyEvent(ImGuiKey_Keypad7, translation[2], -0.1F, accel);
processKeyEvent(ImGuiKey_Keypad9, nearLimit, -0.01F, accel);
processKeyEvent(ImGuiKey_Keypad3, nearLimit, 0.01F, accel);
if (ImHexApi::System::isDebugBuild()) {
processKeyEvent(ImGuiKey_KeypadDivide, farLimit, -1.0F, accel);
processKeyEvent(ImGuiKey_KeypadMultiply, farLimit, 1.0F, accel);
}
processKeyEvent(ImGuiKey_KeypadAdd, rotation[2], -0.075F, accel);
processKeyEvent(ImGuiKey_KeypadSubtract, rotation[2], 0.075F, accel);
rotation[2] = std::fmod(rotation[2], 2 * std::numbers::pi_v<float>);
}
bool validateVector(const std::vector<float> &vector, u32 vertexCount, u32 divisor, const std::string &name,std::string &errorMessage) {
if (!vector.empty()) {
if (vector.size() % divisor != 0) {
errorMessage = name + " must be a multiple of " + std::to_string(divisor);
return false;
}
} else {
errorMessage = name + " can't be empty";
return false;
}
auto vectorCount = vector.size()/divisor;
if (vectorCount != vertexCount) {
errorMessage = hex::format("Expected {} colors, got {}", vertexCount, vectorCount);
return false;
}
return true;
}
template <class T>
void bindBuffers(Buffers<T> &buffers, const gl::VertexArray &vertexArray, Vectors<T> vectors, IndexType indexType) {
buffers.vertices = {};
buffers.normals = {};
buffers.colors = {};
buffers.uv = {};
buffers.indices = {};
vertexArray.bind();
u32 vertexCount = vectors.vertices.size() / 3;
std::string errorMessage;
if (indexType != IndexType::Undefined && !vectors.indices.empty())
buffers.indices = gl::Buffer<T>(gl::BufferType::Index, vectors.indices);
if (validateVector(vectors.vertices, vertexCount, 3, "Positions", errorMessage)) {
if ((indexType == IndexType::Undefined || vectors.indices.empty()) && vertexCount % 3 != 0)
throw std::runtime_error("Without indices vertices must be a multiple of 3");
else
buffers.vertices = gl::Buffer<float>(gl::BufferType::Vertex, vectors.vertices);
} else
throw std::runtime_error(errorMessage);
if (validateVector(vectors.colors, vertexCount, 4, "Colors", errorMessage))
buffers.colors = gl::Buffer<float>(gl::BufferType::Vertex, vectors.colors);
else
throw std::runtime_error(errorMessage);
if (validateVector(vectors.normals, vertexCount, 3, "Normals", errorMessage))
buffers.normals = gl::Buffer<float>(gl::BufferType::Vertex, vectors.normals);
else
throw std::runtime_error(errorMessage);
if (validateVector(vectors.uv, vertexCount, 2, "UV coordinates", errorMessage))
buffers.uv = gl::Buffer<float>(gl::BufferType::Vertex, vectors.uv);
else
throw std::runtime_error(errorMessage);
vertexArray.addBuffer(0, buffers.vertices);
vertexArray.addBuffer(1, buffers.colors, 4);
vertexArray.addBuffer(2, buffers.normals);
vertexArray.addBuffer(3, buffers.uv, 2);
buffers.vertices.unbind();
buffers.colors.unbind();
buffers.normals.unbind();
buffers.uv.unbind();
if (indexType != IndexType::Undefined)
buffers.indices.unbind();
vertexArray.unbind();
}
template <class T>
void bindLineBuffers(LineBuffers<T> &lineBuffers, const gl::VertexArray &vertexArray, const LineVectors<T> &lineVectors, IndexType indexType) {
lineBuffers.vertices = {};
lineBuffers.colors = {};
lineBuffers.indices = {};
u32 vertexCount = lineVectors.vertices.size() / 3;
vertexArray.bind();
std::string errorMessage;
if (indexType != IndexType::Undefined)
lineBuffers.indices = gl::Buffer<T>(gl::BufferType::Index, lineVectors.indices);
if (validateVector(lineVectors.vertices, vertexCount, 3, "Positions", errorMessage)) {
if ((indexType == IndexType::Undefined || lineVectors.indices.empty()) && vertexCount % 3 != 0)
throw std::runtime_error("Without indices vertices must be a multiple of 3");
else
lineBuffers.vertices = gl::Buffer<float>(gl::BufferType::Vertex, lineVectors.vertices);
} else
throw std::runtime_error(errorMessage);
if (validateVector(lineVectors.colors, vertexCount, 4, "Colors", errorMessage))
lineBuffers.colors = gl::Buffer<float>(gl::BufferType::Vertex, lineVectors.colors);
else
throw std::runtime_error(errorMessage);
vertexArray.addBuffer(0, lineBuffers.vertices);
vertexArray.addBuffer(1, lineBuffers.colors, 4);
lineBuffers.vertices.unbind();
lineBuffers.colors.unbind();
if (indexType != IndexType::Undefined)
lineBuffers.indices.unbind();
vertexArray.unbind();
}
void drawWindow(const ImGuiExt::Texture &texture, ImVec2 &renderingWindowSize, const gl::Matrix<float, 4, 4> &mvp) {
auto textureSize = texture.getSize();
auto textureWidth = textureSize.x;
auto textureHeight = textureSize.y;
ImVec2 screenPos = ImGui::GetCursorScreenPos();
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0, 0));
ImGui::SetNextWindowSizeConstraints(scaled({ 350, 350 }), ImVec2(FLT_MAX, FLT_MAX));
if (ImGui::BeginChild("##image", textureSize, ImGuiChildFlags_ResizeX | ImGuiChildFlags_ResizeY | ImGuiChildFlags_Border, ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoScrollWithMouse)) {
renderingWindowSize = ImGui::GetContentRegionAvail();
ImGui::Image(texture, textureSize, ImVec2(0, 1), ImVec2(1, 0));
if (s_drawAxes) {
gl::Matrix<float, 4, 4> axes = gl::Matrix<float, 4, 4>::identity();
axes(0, 3) = 1.0F;
axes(1, 3) = 1.0F;
axes(2, 3) = 1.0F;
axes = axes * mvp;
bool showX = axes(0, 3) > 0.0F;
bool showY = axes(1, 3) > 0.0F;
bool showZ = axes(2, 3) > 0.0F;
axes.updateRow(0, axes.getRow(0) * (1.0F / axes(0, 3)));
axes.updateRow(1, axes.getRow(1) * (1.0F / axes(1, 3)));
axes.updateRow(2, axes.getRow(2) * (1.0F / axes(2, 3)));
auto axesPosx = (axes.getColumn(0) + 1.0F) * (textureWidth / 2.0F);
auto axesPosy = (axes.getColumn(1) + 1.0F) * (-textureHeight / 2.0F) + textureHeight;
ImDrawList *drawList = ImGui::GetWindowDrawList();
if (showX)
drawList->AddText(ImVec2(axesPosx[0], axesPosy[0]) + screenPos, IM_COL32(255, 0, 0, 255), "X");
if (showY)
drawList->AddText(ImVec2(axesPosx[1], axesPosy[1]) + screenPos, IM_COL32(0, 255, 0, 255), "Y");
if (showZ)
drawList->AddText(ImVec2(axesPosx[2], axesPosy[2]) + screenPos, IM_COL32(0, 0, 255, 255), "Z");
}
if (ImHexApi::System::isDebugBuild()) {
auto mousePos = ImClamp(ImGui::GetMousePos() - screenPos, { 0, 0 }, textureSize);
ImDrawList *drawList = ImGui::GetWindowDrawList();
drawList->AddText(
screenPos + scaled({ 5, 5 }),
ImGui::GetColorU32(ImGuiCol_Text),
hex::format("X: {:.5}\nY: {:.5}", mousePos.x, mousePos.y).c_str());
}
}
ImGui::EndChild();
ImGui::PopStyleVar();
// Draw axis arrows toggle
{
ImGui::PushID(1);
if (ImGuiExt::DimmedIconToggle(ICON_BI_EMPTY_ARROWS, &s_drawAxes))
s_shouldReset = true;
ImGui::PopID();
}
ImGui::SameLine();
// Draw grid toggle
{
ImGui::PushID(2);
if (ImGuiExt::DimmedIconToggle(s_isPerspective ? ICON_BI_GRID : ICON_VS_SYMBOL_NUMBER, &s_drawGrid))
s_shouldReset = true;
ImGui::PopID();
}
ImGui::SameLine();
// Draw light source toggle
{
ImGui::PushID(3);
if (ImGuiExt::DimmedIconToggle(ICON_VS_LIGHTBULB, &s_drawLightSource))
s_shouldReset = true;
if (ImGui::IsItemClicked(ImGuiMouseButton_Right)) {
ImGui::OpenPopup("LightSettings");
}
if (ImGui::BeginPopup("LightSettings")) {
if (ImGui::DragFloat3("hex.visualizers.pl_visualizer.3d.light_position"_lang, s_lightPosition.data(), 0.05F)) {
s_shouldUpdateLightSource = true;
}
ImGui::SliderFloat("hex.visualizers.pl_visualizer.3d.ambient_brightness"_lang, &s_lightBrightness.data()[0], 0, 2);
ImGui::SliderFloat("hex.visualizers.pl_visualizer.3d.diffuse_brightness"_lang, &s_lightBrightness.data()[1], 0, 2);
ImGui::SliderFloat("hex.visualizers.pl_visualizer.3d.specular_brightness"_lang, &s_lightBrightness.data()[2], 0, 2);
ImGui::SliderFloat("hex.visualizers.pl_visualizer.3d.object_reflectiveness"_lang, &s_lightBrightness.data()[3], 0, 64);
if (ImGui::ColorEdit3("hex.visualizers.pl_visualizer.3d.light_color"_lang, s_lightColor.data()))
s_shouldUpdateLightSource = true;
ImGui::EndPopup();
}
ImGui::PopID();
}
ImGui::SameLine();
ImGui::SeparatorEx(ImGuiSeparatorFlags_Vertical);
ImGui::SameLine();
// Draw projection toggle
{
ImGui::PushID(4);
if (ImGuiExt::DimmedIconToggle(ICON_BI_VIEW_PERSPECTIVE, ICON_BI_VIEW_ORTHO, &s_isPerspective)) {
s_shouldReset = true;
}
ImGui::PopID();
}
ImGui::SameLine();
// Draw solid / line mode toggle
{
ImGui::PushID(4);
bool isSolid = s_drawMode == GL_TRIANGLES;
if (ImGuiExt::DimmedIconToggle(ICON_BI_MOD_SOLIDIFY, ICON_BI_CUBE , &isSolid)) {
s_shouldReset = true;
s_drawMode = isSolid ? GL_TRIANGLES : GL_LINES;
}
ImGui::PopID();
}
ImGui::SameLine();
ImGui::SeparatorEx(ImGuiSeparatorFlags_Vertical);
ImGui::SameLine();
if (ImGuiExt::DimmedButton("hex.ui.common.reset"_lang, ImVec2(ImGui::GetContentRegionAvail().x, 0))) {
s_translation = { { 0.0F, 0.0F, -3.0F } };
s_rotation = { { 0.0F, 0.0F, 0.0F } };
s_scaling = 1.0F;
}
// Draw more settings
if (ImGui::CollapsingHeader("hex.visualizers.pl_visualizer.3d.more_settings"_lang)) {
if (ImGuiExt::InputFilePicker("hex.visualizers.pl_visualizer.3d.texture_file"_lang, s_texturePath, {}))
s_shouldUpdateTexture = true;
}
}
}
template <class T>
void processRendering(std::shared_ptr<pl::ptrn::Pattern> verticesPattern, std::shared_ptr<pl::ptrn::Pattern> indicesPattern,
std::shared_ptr<pl::ptrn::Pattern> normalsPattern, std::shared_ptr<pl::ptrn::Pattern> colorsPattern,
std::shared_ptr<pl::ptrn::Pattern> uvPattern) {
static gl::LightSourceVectors sourceVectors(20);
static gl::VertexArray sourceVertexArray = {};
static gl::LightSourceBuffers sourceBuffers(sourceVertexArray, sourceVectors);
static gl::VertexArray gridVertexArray = {};
static gl::GridVectors gridVectors(9);
static gl::GridBuffers gridBuffers(gridVertexArray, gridVectors);
static gl::VertexArray axesVertexArray = {};
static gl::AxesVectors axesVectors;
static gl::AxesBuffers axesBuffers(axesVertexArray, axesVectors);
static gl::VertexArray vertexArray = {};
if (s_renderingWindowSize.x <= 0 || s_renderingWindowSize.y <= 0)
s_renderingWindowSize = {350_scaled, 350_scaled};
gl::Matrix<float, 4, 4> mvp(0);
static Buffers<T> buffers;
static LineBuffers<T> lineBuffers;
if (s_shouldReset) {
s_shouldReset = false;
s_shouldUpdateLightSource = true;
if (s_drawMode == GL_TRIANGLES) {
Vectors<T> vectors;
vectors.vertices = patternToArray<float>(verticesPattern.get());
s_vertexCount = vectors.vertices.size() / 3;
if (s_indexType != IndexType::Undefined) {
vectors.indices = patternToArray<T>(indicesPattern.get());
s_badIndices.clear();
auto indexCount = vectors.indices.size();
if (indexCount < 3 || indexCount % 3 != 0) {
throw std::runtime_error("Index count must be a multiple of 3");
}
auto booleans = std::views::transform(vectors.indices,isIndexInRange);
if (!std::accumulate(std::begin(booleans), std::end(booleans), true, std::logical_and<>())) {
std::string badIndicesStr = "Invalid indices: ";
for (auto badIndex : s_badIndices)
badIndicesStr += std::to_string(badIndex) + ", ";
badIndicesStr.pop_back();
badIndicesStr.pop_back();
badIndicesStr += hex::format(" for {} vertices",s_vertexCount);
throw std::runtime_error(badIndicesStr);
}
}
if (colorsPattern != nullptr)
vectors.colors = patternToArray<float>(colorsPattern.get());
if (normalsPattern != nullptr)
vectors.normals = patternToArray<float>(normalsPattern.get());
if (uvPattern != nullptr)
vectors.uv = patternToArray<float>(uvPattern.get());
loadVectors(vectors, s_indexType);
bindBuffers(buffers, vertexArray, vectors, s_indexType);
} else {
LineVectors<T> lineVectors;
lineVectors.vertices = patternToArray<float>(verticesPattern.get());
s_vertexCount = lineVectors.vertices.size() / 3;
if (s_indexType != IndexType::Undefined) {
lineVectors.indices = patternToArray<T>(indicesPattern.get());
auto indexCount = lineVectors.indices.size();
if (indexCount < 3 || indexCount % 3 != 0) {
throw std::runtime_error("Index count must be a multiple of 3");
}
s_badIndices.clear();
if (!std::ranges::all_of(lineVectors.indices,isIndexInRange)) {
std::string badIndicesStr = "Invalid indices: ";
for (auto badIndex : s_badIndices)
badIndicesStr += std::to_string(badIndex) + ", ";
badIndicesStr.pop_back();
badIndicesStr.pop_back();
badIndicesStr += hex::format(" for {} vertices",s_vertexCount);
throw std::runtime_error(badIndicesStr);
}
}
if (colorsPattern != nullptr)
lineVectors.colors = patternToArray<float>(colorsPattern.get());
loadLineVectors(lineVectors, s_indexType);
bindLineBuffers(lineBuffers, vertexArray, lineVectors, s_indexType);
}
}
if (s_shouldUpdateLightSource) {
s_shouldUpdateLightSource = false;
sourceVectors.moveTo(s_lightPosition);
sourceVectors.setColor(s_lightColor[0], s_lightColor[1], s_lightColor[2]);
sourceBuffers.moveVertices(sourceVertexArray, sourceVectors);
sourceBuffers.updateColors(sourceVertexArray, sourceVectors);
}
{
gl::Matrix<float, 4, 4> model(0);
gl::Matrix<float, 4, 4> scaledModel(0);
gl::Matrix<float, 4, 4> view(0);
gl::Matrix<float, 4, 4> projection(0);
unsigned width = std::floor(s_renderingWindowSize.x);
unsigned height = std::floor(s_renderingWindowSize.y);
gl::FrameBuffer frameBuffer(width, height);
gl::Texture renderTexture(width, height);
frameBuffer.attachTexture(renderTexture);
frameBuffer.bind();
s_rotate = gl::getRotationMatrix<float>(s_rotation, true, gl::RotationSequence::ZYX);
gl::Matrix<float, 4, 4> scale = gl::Matrix<float, 4, 4>::identity();
gl::Matrix<float, 4, 4> scaleForVertices = gl::Matrix<float, 4, 4>::identity();
gl::Matrix<float, 4, 4> translate = gl::Matrix<float, 4, 4>::identity();
float totalScale;
float viewWidth = s_renderingWindowSize.x / 500.0F;
float viewHeight = s_renderingWindowSize.y / 500.0F;
glViewport(0,0 , GLsizei(renderTexture.getWidth()), GLsizei(renderTexture.getHeight()));
glDepthRangef(s_nearLimit, s_farLimit);
glClearColor(0.00F, 0.00F, 0.00F, 0.00F);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
if (!s_isPerspective) {
projection = gl::GetOrthographicMatrix(viewWidth, viewHeight, s_nearLimit, s_farLimit, false);
totalScale = s_scaling / (std::fabs(s_translation[2]));
scale(0, 0) = totalScale;
scale(1, 1) = totalScale;
scale(2, 2) = totalScale;
translate(3, 0) = s_translation[0] / std::fabs(s_translation[2]);
translate(3, 1) = s_translation[1] / std::fabs(s_translation[2]);
translate(3, 2) = s_translation[2];
} else {
projection = gl::GetPerspectiveMatrix(viewWidth, viewHeight, s_nearLimit, s_farLimit, false);
totalScale = s_scaling;
scale(0, 0) = totalScale;
scale(1, 1) = totalScale;
scale(2, 2) = totalScale;
translate(3, 0) = s_translation[0];
translate(3, 1) = s_translation[1];
translate(3, 2) = s_translation[2];
}
totalScale /= (3.0F * s_max);
scaleForVertices(0, 0) = totalScale;
scaleForVertices(1, 1) = totalScale;
scaleForVertices(2, 2) = totalScale;
model = s_rotate * scale;
scaledModel = s_rotate * scaleForVertices;
view = translate;
mvp = model * view * projection;
if (s_drawMode == GL_TRIANGLES) {
static gl::Shader shader = gl::Shader(
romfs::get("shaders/default/vertex.glsl").string(),
romfs::get("shaders/default/fragment.glsl").string()
);
shader.bind();
shader.setUniform("modelScale", scaledModel);
shader.setUniform("modelMatrix", model);
shader.setUniform("viewMatrix", view);
shader.setUniform("projectionMatrix",projection);
shader.setUniform("lightPosition", s_lightPosition);
shader.setUniform("lightBrightness", s_lightBrightness);
shader.setUniform("lightColor", s_lightColor);
vertexArray.bind();
if (s_shouldUpdateTexture) {
s_shouldUpdateTexture = false;
s_modelTexture = ImGuiExt::Texture::fromImage(s_texturePath, ImGuiExt::Texture::Filter::Nearest);
if (s_modelTexture.isValid()) {
s_drawTexture = true;
}
}
if (s_drawTexture)
glBindTexture(GL_TEXTURE_2D, s_modelTexture);
buffers.indices.bind();
if (buffers.indices.getSize() == 0)
buffers.vertices.draw(s_drawMode);
else
buffers.indices.draw(s_drawMode);
buffers.indices.unbind();
} else {
static gl::Shader lineShader = gl::Shader(
romfs::get("shaders/default/lineVertex.glsl").string(),
romfs::get("shaders/default/lineFragment.glsl").string()
);
lineShader.bind();
lineShader.setUniform("modelMatrix", scaledModel);
lineShader.setUniform("viewMatrix", view);
lineShader.setUniform("projectionMatrix", projection);
vertexArray.bind();
lineBuffers.indices.bind();
if (lineBuffers.indices.getSize() == 0)
lineBuffers.vertices.draw(s_drawMode);
else
lineBuffers.indices.draw(s_drawMode);
lineBuffers.indices.unbind();
}
if (s_drawGrid || s_drawAxes) {
static auto gridAxesShader = gl::Shader(
romfs::get("shaders/default/lineVertex.glsl").string(),
romfs::get("shaders/default/lineFragment.glsl").string()
);
gridAxesShader.bind();
gridAxesShader.setUniform("modelMatrix", model);
gridAxesShader.setUniform("viewMatrix", view);
gridAxesShader.setUniform("projectionMatrix", projection);
if (s_drawGrid) {
gridVertexArray.bind();
gridBuffers.getIndices().bind();
gridBuffers.getIndices().draw(GL_LINES);
gridBuffers.getIndices().unbind();
gridVertexArray.unbind();
}
if (s_drawAxes) {
axesVertexArray.bind();
axesBuffers.getIndices().bind();
axesBuffers.getIndices().draw(GL_LINES);
axesBuffers.getIndices().unbind();
axesVertexArray.unbind();
}
gridAxesShader.unbind();
}
if (s_drawLightSource) {
static auto sourceShader = gl::Shader(
romfs::get("shaders/default/lightVertex.glsl").string(),
romfs::get("shaders/default/lightFragment.glsl").string()
);
sourceShader.bind();
sourceShader.setUniform("modelMatrix", model);
sourceShader.setUniform("viewMatrix", view);
sourceShader.setUniform("projectionMatrix", projection);
sourceVertexArray.bind();
sourceBuffers.getIndices().bind();
sourceBuffers.getIndices().draw(GL_TRIANGLES);
sourceBuffers.getIndices().unbind();
sourceVertexArray.unbind();
sourceShader.unbind();
}
vertexArray.unbind();
frameBuffer.unbind();
s_texture = ImGuiExt::Texture::fromGLTexture(renderTexture.release(), GLsizei(renderTexture.getWidth()), GLsizei(renderTexture.getHeight()));
drawWindow(s_texture, s_renderingWindowSize, mvp);
}
}
void draw3DVisualizer(pl::ptrn::Pattern &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
std::shared_ptr<pl::ptrn::Pattern> verticesPattern = arguments[0].toPattern();
std::shared_ptr<pl::ptrn::Pattern> indicesPattern = arguments[1].toPattern();
std::shared_ptr<pl::ptrn::Pattern> normalsPattern = nullptr;
std::shared_ptr<pl::ptrn::Pattern> colorsPattern = nullptr;
std::shared_ptr<pl::ptrn::Pattern> uvPattern = nullptr;
std::string textureFile;
if (arguments.size() > 2) {
normalsPattern = arguments[2].toPattern();
if (arguments.size() > 3) {
colorsPattern = arguments[3].toPattern();
if (arguments.size() > 4) {
uvPattern = arguments[4].toPattern();
if (arguments.size() > 5)
textureFile = arguments[5].toString();
}
}
}
s_texturePath = textureFile;
s_drawTexture = !textureFile.empty();
if (shouldReset)
s_shouldReset = true;
processInputEvents(s_rotation, s_translation, s_scaling, s_nearLimit, s_farLimit);
auto *iterable = dynamic_cast<pl::ptrn::IIterable*>(indicesPattern.get());
if (iterable != nullptr && iterable->getEntryCount() > 0) {
const auto &content = iterable->getEntry(0);
if (content->getSize() == 1) {
s_indexType = IndexType::U8;
processRendering<u8>(verticesPattern, indicesPattern, normalsPattern, colorsPattern, uvPattern);
} else if (content->getSize() == 2) {
s_indexType = IndexType::U16;
processRendering<u16>(verticesPattern, indicesPattern, normalsPattern, colorsPattern, uvPattern);
} else if (content->getSize() == 4) {
s_indexType = IndexType::U32;
processRendering<u32>(verticesPattern, indicesPattern, normalsPattern, colorsPattern, uvPattern);
}
} else {
s_indexType = IndexType::Undefined;
processRendering<u8>(verticesPattern, indicesPattern, normalsPattern, colorsPattern, uvPattern);
}
}
}