Added Voltage/Current sensing interface

toggle it on with 'v' in the main menu. You'll need the new Wokwi bridge app to connect the current sensor lines
This commit is contained in:
Kevin Santo Cappuccio 2023-12-05 17:16:49 -08:00
parent fb41f849f8
commit df7991df8e
13 changed files with 360 additions and 77 deletions

BIN
Hardware/.DS_Store vendored

Binary file not shown.

Binary file not shown.

View File

@ -629,8 +629,11 @@ while True:
print("\n\n\rsketch.ino\n\r") print("\n\n\rsketch.ino\n\r")
print(sketch) print(sketch)
print("\n\n\rlibraries.txt\n\r") try:
print(libraries) print("\n\n\rlibraries.txt\n\r")
print(libraries)
except:
print("\n\n\rNo libraries.txt\n\r")
# if (justreconnected == 1): # if (justreconnected == 1):
@ -662,6 +665,10 @@ while True:
conn1 = "112" conn1 = "112"
elif conn1.endswith('3'): elif conn1.endswith('3'):
conn1 = "113" conn1 = "113"
elif conn1.endswith('4'):
conn1 = "108"
elif conn1.endswith('5'):
conn1 = "109"
if conn1.startswith("bb1:") == True: if conn1.startswith("bb1:") == True:
periodIndex = conn1.find('.') periodIndex = conn1.find('.')
@ -727,6 +734,10 @@ while True:
conn2 = "112" conn2 = "112"
elif conn2.endswith('3'): elif conn2.endswith('3'):
conn2 = "113" conn2 = "113"
elif conn2.endswith('4'):
conn2 = "108"
elif conn2.endswith('5'):
conn2 = "109"
if conn2.startswith("bb1:") == True: if conn2.startswith("bb1:") == True:
periodIndex = conn2.find('.') periodIndex = conn2.find('.')

View File

@ -2,4 +2,5 @@ fuck https://wokwi.com/projects/369614891595393025
fuck2 https://wokwi.com/projects/367384677537829889 fuck2 https://wokwi.com/projects/367384677537829889
fuck3 https://wokwi.com/projects/369024970682423297 fuck3 https://wokwi.com/projects/369024970682423297
LEDarray https://wokwi.com/projects/370450364106546177 LEDarray https://wokwi.com/projects/370450364106546177
current https://wokwi.com/projects/374273521728204801

View File

@ -14,7 +14,7 @@
//SerialPIO ardSerial(1, 0); //SerialPIO ardSerial(1, 0);
void initArduino (void) void initArduino (void) //if the UART is set up, the Arduino won't flash from it's own USB port
{ {
//Serial1.setRX(1); //Serial1.setRX(1);

View File

@ -237,7 +237,10 @@ void sendPath(int i, int setOrClear)
if (path[i].y[chip] == -1 || path[i].x[chip] == -1) if (path[i].y[chip] == -1 || path[i].x[chip] == -1)
{ {
// Serial.print("!"); if (debugNTCC)
Serial.print("!");
continue; continue;
} }

View File

@ -660,6 +660,24 @@ void parseStringToBridges(void)
void debugFlagInit(void) void debugFlagInit(void)
{ {
if (EEPROM.read(FIRSTSTARTUPADDRESS) == 255)
{
EEPROM.write(FIRSTSTARTUPADDRESS, 0);
EEPROM.write(DEBUG_FILEPARSINGADDRESS, 0);
EEPROM.write(TIME_FILEPARSINGADDRESS, 0);
EEPROM.write(DEBUG_NETMANAGERADDRESS, 0);
EEPROM.write(TIME_NETMANAGERADDRESS, 0);
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSADDRESS, 0);
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS, 0);
EEPROM.write(DEBUG_LEDSADDRESS, 0);
EEPROM.write(LEDBRIGHTNESSADDRESS, DEFAULTBRIGHTNESS);
EEPROM.write(RAILBRIGHTNESSADDRESS, DEFAULTRAILBRIGHTNESS);
EEPROM.write(SPECIALBRIGHTNESSADDRESS, DEFAULTSPECIALNETBRIGHTNESS);
EEPROM.commit();
delay(5);
}
#ifdef EEPROMSTUFF #ifdef EEPROMSTUFF
debugFP = EEPROM.read(DEBUG_FILEPARSINGADDRESS); debugFP = EEPROM.read(DEBUG_FILEPARSINGADDRESS);
debugFPtime = EEPROM.read(TIME_FILEPARSINGADDRESS); debugFPtime = EEPROM.read(TIME_FILEPARSINGADDRESS);
@ -741,18 +759,18 @@ void debugFlagSet(int flag)
case 1: case 1:
{ {
flagStatus = EEPROM.read(DEBUG_FILEPARSINGADDRESS); flagStatus = EEPROM.read(DEBUG_FILEPARSINGADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(DEBUG_FILEPARSINGADDRESS, 0);
debugFP = false;
}
else
{ {
EEPROM.write(DEBUG_FILEPARSINGADDRESS, 1); EEPROM.write(DEBUG_FILEPARSINGADDRESS, 1);
debugFP = true; debugFP = true;
} }
else
{
EEPROM.write(DEBUG_FILEPARSINGADDRESS, 0);
debugFP = false;
}
break; break;
} }
@ -760,18 +778,18 @@ void debugFlagSet(int flag)
{ {
flagStatus = EEPROM.read(TIME_FILEPARSINGADDRESS); flagStatus = EEPROM.read(TIME_FILEPARSINGADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(TIME_FILEPARSINGADDRESS, 0);
debugFPtime = false;
}
else
{ {
EEPROM.write(TIME_FILEPARSINGADDRESS, 1); EEPROM.write(TIME_FILEPARSINGADDRESS, 1);
debugFPtime = true; debugFPtime = true;
} }
else
{
EEPROM.write(TIME_FILEPARSINGADDRESS, 0);
debugFPtime = false;
}
break; break;
} }
@ -779,72 +797,73 @@ void debugFlagSet(int flag)
{ {
flagStatus = EEPROM.read(DEBUG_NETMANAGERADDRESS); flagStatus = EEPROM.read(DEBUG_NETMANAGERADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(DEBUG_NETMANAGERADDRESS, 0);
debugNM = false;
}
else
{ {
EEPROM.write(DEBUG_NETMANAGERADDRESS, 1); EEPROM.write(DEBUG_NETMANAGERADDRESS, 1);
debugNM = true; debugNM = true;
} }
else
{
EEPROM.write(DEBUG_NETMANAGERADDRESS, 0);
debugNM = false;
}
break; break;
} }
case 4: case 4:
{ {
flagStatus = EEPROM.read(TIME_NETMANAGERADDRESS); flagStatus = EEPROM.read(TIME_NETMANAGERADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(TIME_NETMANAGERADDRESS, 0);
debugNMtime = false;
}
else
{ {
EEPROM.write(TIME_NETMANAGERADDRESS, 1); EEPROM.write(TIME_NETMANAGERADDRESS, 1);
debugNMtime = true; debugNMtime = true;
} }
else
{
EEPROM.write(TIME_NETMANAGERADDRESS, 0);
debugNMtime = false;
}
break; break;
} }
case 5: case 5:
{ {
flagStatus = EEPROM.read(DEBUG_NETTOCHIPCONNECTIONSADDRESS); flagStatus = EEPROM.read(DEBUG_NETTOCHIPCONNECTIONSADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSADDRESS, 0);
debugNTCC = false;
}
else
{ {
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSADDRESS, 1); EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSADDRESS, 1);
debugNTCC = true; debugNTCC = true;
} }
else
{
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSADDRESS, 0);
debugNTCC = false;
}
break; break;
} }
case 6: case 6:
{ {
flagStatus = EEPROM.read(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS); flagStatus = EEPROM.read(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS);
if (flagStatus == 1)
{
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS, 0);
debugNTCC2 = false; if (flagStatus == 0)
}
else
{ {
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS, 1); EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS, 1);
debugNTCC2 = true; debugNTCC2 = true;
} }
else
{
EEPROM.write(DEBUG_NETTOCHIPCONNECTIONSALTADDRESS, 0);
debugNTCC2 = false;
}
break; break;
} }
@ -852,18 +871,18 @@ void debugFlagSet(int flag)
{ {
flagStatus = EEPROM.read(DEBUG_LEDSADDRESS); flagStatus = EEPROM.read(DEBUG_LEDSADDRESS);
if (flagStatus == 1) if (flagStatus == 0)
{
EEPROM.write(DEBUG_LEDSADDRESS, 0);
debugLEDs = false;
}
else
{ {
EEPROM.write(DEBUG_LEDSADDRESS, 1); EEPROM.write(DEBUG_LEDSADDRESS, 1);
debugLEDs = true; debugLEDs = true;
} }
else
{
EEPROM.write(DEBUG_LEDSADDRESS, 0);
debugLEDs = false;
}
break; break;
} }

View File

@ -15,6 +15,8 @@
#define RAILBRIGHTNESSADDRESS 40 #define RAILBRIGHTNESSADDRESS 40
#define SPECIALBRIGHTNESSADDRESS 41 #define SPECIALBRIGHTNESSADDRESS 41
#define FIRSTSTARTUPADDRESS 42

View File

@ -113,7 +113,7 @@ struct chipStatus ch[12] = {
{11,'L', {11,'L',
{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}, // x status {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}, // x status
{-1,-1,-1,-1,-1,-1,-1,-1}, //y status {-1,-1,-1,-1,-1,-1,-1,-1}, //y status
{CURRENT_SENSE_MINUS, CURRENT_SENSE_PLUS, ADC0_5V, ADC1_5V, ADC2_5V, ADC3_8V, DAC1_8V, DAC0_5V, t1, t30, b1, b30, NANO_A4, NANO_A5, SUPPLY_5V, RP_GPIO_0}, {CURRENT_SENSE_MINUS, CURRENT_SENSE_PLUS, ADC0_5V, ADC1_5V, ADC2_5V, ADC3_8V, DAC1_8V, DAC0_5V, t1, t30, b1, b30, RP_UART_RX, RP_UART_TX, SUPPLY_5V, RP_GPIO_0},
{CHIP_A,CHIP_B,CHIP_C,CHIP_D,CHIP_E,CHIP_F,CHIP_G,CHIP_H}} {CHIP_A,CHIP_B,CHIP_C,CHIP_D,CHIP_E,CHIP_F,CHIP_G,CHIP_H}}
}; };
@ -132,7 +132,7 @@ struct nanoStatus nano = { //there's only one of these so ill declare and inita
{ 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 },//Whether this pin has 1 or 2 connections to special function chips (OR maybe have it be a map like i = 2 j = 3 k = 4 l = 5 if there's 2 it's the product of them ij = 6 ik = 8 il = 10 jk = 12 jl = 15 kl = 20 we're trading minuscule amounts of CPU for RAM) { 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 },//Whether this pin has 1 or 2 connections to special function chips (OR maybe have it be a map like i = 2 j = 3 k = 4 l = 5 if there's 2 it's the product of them ij = 6 ik = 8 il = 10 jk = 12 jl = 15 kl = 20 we're trading minuscule amounts of CPU for RAM)
// | | | | | | | | | | | | | | | | | | | | | | | | | // | | | | | | | | | | | | | | | | | | | | | | | | |
{ CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J },//Since there's no overlapping connections between Chip I and J, this holds which of those 2 chips has a connection at that index, if numConns is 1, you only need to check this one { CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J , CHIP_I , CHIP_J },//Since there's no overlapping connections between Chip I and J, this holds which of those 2 chips has a connection at that index, if numConns is 1, you only need to check this one
{ -1 , -1 , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , -1 , -1 , -1 , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_L , CHIP_L , -1 , -1 },//Since there's no overlapping connections between Chip K and L, this holds which of those 2 chips has a connection at that index, -1 for no connection { -1 , -1 , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , CHIP_K , -1 , -1 , -1 , CHIP_K , CHIP_K , CHIP_K , CHIP_K , -1 , -1 , -1 , -1 },//Since there's no overlapping connections between Chip K and L, this holds which of those 2 chips has a connection at that index, -1 for no connection
// | | | | | | | | | | | | | | | | | | | | | | | | | // | | | | | | | | | | | | | | | | | | | | | | | | |
{ -1 , 1 , -1 , 3 , -1 , 5 , -1 , 7 , -1 , 9 , -1 , 8 , -1 , 10 , 11 , -1 , 0 , -1 , 2 , -1 , 4 , -1 , 6 , -1 },//holds which X pin is connected to the index on Chip I, -1 for none { -1 , 1 , -1 , 3 , -1 , 5 , -1 , 7 , -1 , 9 , -1 , 8 , -1 , 10 , 11 , -1 , 0 , -1 , 2 , -1 , 4 , -1 , 6 , -1 },//holds which X pin is connected to the index on Chip I, -1 for none
{ -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 },//-1 for not connected to that chip, 0 for available, >0 means it's connected and the netNumber is stored here { -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 , 0 , -1 },//-1 for not connected to that chip, 0 for available, >0 means it's connected and the netNumber is stored here

View File

@ -473,7 +473,7 @@ void commitPaths(void)
if (path[i].chip[0] != CHIP_L && path[i].chip[1] == CHIP_L) // if theyre both chip L we'll deal with it differently if (path[i].chip[0] != CHIP_L && path[i].chip[1] == CHIP_L) // if theyre both chip L we'll deal with it differently
{ {
// Serial.print("\tBBtoCHIP L "); // Serial.print("\tBBtoCHIP L \n\n\n\n");
int yMapBBc0 = 0; // y 0 is always connected to chip L int yMapBBc0 = 0; // y 0 is always connected to chip L
int xMapChipL = xMapForNode(path[i].node2, CHIP_L); int xMapChipL = xMapForNode(path[i].node2, CHIP_L);
@ -1151,6 +1151,7 @@ void resolveAltPaths(void)
if (foundPath == 1) if (foundPath == 1)
{ {
break; break;
} }
int giveUpOnL = 0; int giveUpOnL = 0;
@ -2487,7 +2488,7 @@ void assignPathType(int pathIndex)
if ((path[pathIndex].node1 == 1 || path[pathIndex].node1 == 30 || path[pathIndex].node1 == 31 || path[pathIndex].node1 == 60) || path[pathIndex].chip[0] == CHIP_L) if ((path[pathIndex].node1 == 1 || path[pathIndex].node1 == 30 || path[pathIndex].node1 == 31 || path[pathIndex].node1 == 60) || path[pathIndex].chip[0] == CHIP_L)
{ {
// Serial.print("\n\n\rthis should be a bb to sf connection\n\n\n\r "); // Serial.print("\n\n\rthis should be a bb to sf connection\n\n\n\r ");
path[pathIndex].altPathNeeded = true; //path[pathIndex].altPathNeeded = true;
swapNodes(pathIndex); swapNodes(pathIndex);
path[pathIndex].Lchip = true; path[pathIndex].Lchip = true;
@ -2510,7 +2511,7 @@ void assignPathType(int pathIndex)
if ((path[pathIndex].node2 == 1 || path[pathIndex].node2 == 30 || path[pathIndex].node2 == 31 || path[pathIndex].node2 == 60) || path[pathIndex].chip[1] == CHIP_L) if ((path[pathIndex].node2 == 1 || path[pathIndex].node2 == 30 || path[pathIndex].node2 == 31 || path[pathIndex].node2 == 60) || path[pathIndex].chip[1] == CHIP_L)
{ {
// Serial.print("\n\n\rthis should be a bb to sf connection 2\n\n\n\r "); // Serial.print("\n\n\rthis should be a bb to sf connection 2\n\n\n\r ");
path[pathIndex].altPathNeeded = true; //path[pathIndex].altPathNeeded = true;
path[pathIndex].Lchip = true; path[pathIndex].Lchip = true;
path[pathIndex].nodeType[1] = SF; path[pathIndex].nodeType[1] = SF;
} }

View File

@ -5,7 +5,7 @@
#include "Adafruit_INA219.h" #include "Adafruit_INA219.h"
#include "NetManager.h" #include "NetManager.h"
#include "MatrixStateRP2040.h"
#include "LEDs.h" #include "LEDs.h"
#include <Arduino.h> #include <Arduino.h>
@ -21,10 +21,24 @@
#include <SPI.h> #include <SPI.h>
#define CSI Serial.write("\x1B\x5B");
#define DAC_RESOLUTION 9 #define DAC_RESOLUTION 9
int revisionNumber = 0; int revisionNumber = 0;
int showReadings = 0;
int showADCreadings[4] = {1,1,1,1};
int showINA0[3] = {1,1,1}; //0 = current, 1 = voltage, 2 = power
int showINA1[3] = {0, 0, 0}; //0 = current, 1 = voltage, 2 = power
int showDAC0 = 0;
int showDAC1 = 0;
float freq[3] = {1, 1, 0}; float freq[3] = {1, 1, 0};
uint32_t period[3] = {0, 0, 0}; uint32_t period[3] = {0, 0, 0};
uint32_t halvePeriod[3] = {0, 0, 0}; uint32_t halvePeriod[3] = {0, 0, 0};
@ -147,8 +161,8 @@ void initINA219(void)
Serial.println("Failed to find INA219 chip"); Serial.println("Failed to find INA219 chip");
} }
INA0.setMaxCurrentShunt(1, 2); INA0.setMaxCurrentShunt(1, 2.0);
INA1.setMaxCurrentShunt(1, 2); INA1.setMaxCurrentShunt(1, 2.0);
Serial.println(INA0.setBusVoltageRange(16)); Serial.println(INA0.setBusVoltageRange(16));
Serial.println(INA1.setBusVoltageRange(16)); Serial.println(INA1.setBusVoltageRange(16));
@ -266,20 +280,208 @@ void setDac1_8VinputCode(uint16_t inputCode)
} }
} }
void chooseShownReadings(void)
{
showADCreadings[0] = 0;
showADCreadings[1] = 0;
showADCreadings[2] = 0;
showADCreadings[3] = 0;
for (int i = 0; i <= newBridgeIndex; i++)
{
if (path[i].node1 == ADC0_5V || path[i].node2 == ADC0_5V)
{
showADCreadings[0] = 1;
}
if (path[i].node1 == ADC1_5V || path[i].node2 == ADC1_5V)
{
showADCreadings[1] = 1;
}
if (path[i].node1 == ADC2_5V || path[i].node2 == ADC2_5V)
{
showADCreadings[2] = 1;
}
if (path[i].node1 == ADC3_8V || path[i].node2 == ADC3_8V)
{
showADCreadings[3] = 1;
}
if (path[i].node1 == CURRENT_SENSE_PLUS || path[i].node1 == CURRENT_SENSE_PLUS || path[i].node2 == CURRENT_SENSE_MINUS || path[i].node2 == CURRENT_SENSE_MINUS)
{
switch (showReadings)
{
case 0:
case 1:
showINA0[0] = 1;
showINA0[1] = 0;
showINA0[2] = 0;
break;
case 2:
showINA0[0] = 1;
showINA0[1] = 1;
showINA0[2] = 0;
break;
case 3:
showINA0[0] = 1;
showINA0[1] = 1;
showINA0[2] = 1;
break;
}
}
}
}
void showMeasurements(int samples)
{
while (Serial.available() == 0)
{
CSI
Serial.write("2K");
int adc0ReadingUnscaled;
float adc0Reading;
int adc1ReadingUnscaled;
float adc1Reading;
int adc2ReadingUnscaled;
float adc2Reading;
int adc3ReadingUnscaled;
float adc3Reading;
int bs = 0;
if (showADCreadings[0] == 1)
{
adc0ReadingUnscaled = readAdc(0, samples);
adc0Reading = (adc0ReadingUnscaled) * (5.0 / 4095);
//adc0Reading -= 0.1; // offset
bs+= Serial.print("D0: ");
bs+=Serial.print(adc0Reading);
bs+=Serial.print("V\t");
}
if (showADCreadings[1] == 1)
{
adc1ReadingUnscaled = readAdc(1, samples);
adc1Reading = (adc1ReadingUnscaled) * (5.0 / 4095);
//adc1Reading -= 0.1; // offset
bs+=Serial.print("D1: ");
bs+=Serial.print(adc1Reading);
bs+=Serial.print("V\t");
}
if (showADCreadings[2] == 1)
{
adc2ReadingUnscaled = readAdc(2, samples);
adc2Reading = (adc2ReadingUnscaled) * (5.0 / 4095);
//adc2Reading -= 0.1; // offset
bs+=Serial.print("D2: ");
bs+=Serial.print(adc2Reading);
bs+=Serial.print("V\t");
}
if (showADCreadings[3] == 1)
{
adc3ReadingUnscaled = readAdc(3, samples);
adc3Reading = (adc3ReadingUnscaled) * (16.0 / 4010);
adc3Reading -= 8.7; // offset
bs+=Serial.print("D3: ");
bs+=Serial.print(adc3Reading);
bs+=Serial.print("V\t");
}
if (showINA0[0] == 1 || showINA0[1] == 1 || showINA0[2] == 1)
{
bs+=Serial.print(" INA219: ");
}
if (showINA0[0] == 1)
{
bs+=Serial.print("I: ");
bs+=Serial.print(INA0.getCurrent_mA());
bs+=Serial.print("mA\t");
}
if (showINA0[1] == 1)
{
bs+=Serial.print(" V: ");
bs+=Serial.print(INA0.getBusVoltage());
bs+=Serial.print("V\t");
}
if (showINA0[2] == 1)
{
bs+=Serial.print("P: ");
bs+=Serial.print(INA0.getPower_mW());
bs+=Serial.print("mW\t");
}
bs+=Serial.print(" \r");
// for (int i = 0; i < bs; i++)
// {
// Serial.print("\b");
// }
// Serial.print("ADC1: ");
// Serial.print(adc1ReadingUnscaled);
// Serial.print("V\n\r");
// Serial.print("ADC2: ");
// Serial.print(adc2ReadingUnscaled);
// Serial.print("V\n\r");
// Serial.print("ADC3: ");
// Serial.print(adc3ReadingUnscaled);
// Serial.print("V\n\n\r");
delay(250);
}
}
int readAdc(int channel, int samples) int readAdc(int channel, int samples)
{ {
int adcReadingAverage = 0; int adcReadingAverage = 0;
uint8_t adcChannel = channel+ ADC0_PIN;
for (int i = 0; i < samples; i++) for (int i = 0; i < samples; i++)
{ {
adcReadingAverage += analogRead(channel); adcReadingAverage += analogRead(adcChannel);
delay(1); delay(1);
} }
int adc3Reading = adcReadingAverage / samples; int adcReading = adcReadingAverage / samples;
// Serial.print(adc3Reading); // Serial.print(adc3Reading);
// float adc3Voltage = (adc3Reading - 2528) / 220.0; // painstakingly measured // float adc3Voltage = (adc3Reading - 2528) / 220.0; // painstakingly measured
return adc3Reading; return adcReading;
} }
int waveGen(void) int waveGen(void)

View File

@ -6,6 +6,17 @@
#include "INA219.h" #include "INA219.h"
#include <Wire.h> #include <Wire.h>
extern int showReadings;
extern int showINA0[3]; //0 = current, 1 = voltage, 2 = power
extern int showINA1[3]; //0 = current, 1 = voltage, 2 = power
extern int showDAC0;
extern int showDAC1;
extern int showADCreadings[4];
extern int revisionNumber; extern int revisionNumber;
void initINA219(void); void initINA219(void);
@ -26,7 +37,8 @@ int waveGen(void);
void GetAdc29Status(int i); void GetAdc29Status(int i);
int readAdc(int channel, int samples = 10); int readAdc(int channel, int samples = 10);
void chooseShownReadings(void);
void showMeasurements(int samples = 50);
const uint16_t DACLookup_FullSine_9Bit[512] = const uint16_t DACLookup_FullSine_9Bit[512] =

View File

@ -49,7 +49,7 @@ void setup()
initADC(); initADC();
delay(1); delay(1);
initDAC(); initDAC(); // also sets revisionNumber
delay(1); delay(1);
initINA219(); initINA219();
delay(1); delay(1);
@ -87,25 +87,29 @@ void loop()
char input; char input;
unsigned long timer = 0; unsigned long timer = 0;
// while (1) rainbowBounce(80); //I uncomment this to test the LEDs on a fresh board
// while (1) randomColors(0,90);
menu: menu:
// showMeasurements();
// showLEDsCore2 = 1;
Serial.print("\n\n\r\t\t\tMenu\n\n\r"); Serial.print("\n\n\r\t\t\tMenu\n\n\r");
Serial.print("\tn = show netlist\n\r"); Serial.print("\tn = show netlist\n\r");
Serial.print("\tb = show bridge array\n\r"); Serial.print("\tb = show bridge array\n\r");
Serial.print("\tw = waveGen\n\r"); Serial.print("\tw = waveGen\n\r");
// Serial.print("\tm = measure current/voltage\n\r"); Serial.print("\tv = toggle show current/voltage\n\r");
Serial.print("\tf = load formatted nodeFile\n\r"); Serial.print("\tf = load formatted nodeFile\n\r");
Serial.print("\tp = paste new Wokwi diagram\n\r"); Serial.print("\tp = paste new Wokwi diagram\n\r");
Serial.print("\tl = LED brightness / test\n\r"); Serial.print("\tl = LED brightness / test\n\r");
Serial.print("\td = toggle debug flags\n\r"); Serial.print("\td = toggle debug flags\n\r");
Serial.print("\tr = reset Arduino\n\r"); Serial.print("\tr = reset Arduino\n\r");
Serial.print("\n\r"); Serial.print("\n\n\r");
dontshowmenu:
while (Serial.available() == 0) while (Serial.available() == 0)
; {
if (showReadings >= 1)
{
showMeasurements();
}
}
input = Serial.read(); input = Serial.read();
@ -114,6 +118,31 @@ menu:
switch (input) switch (input)
{ {
case 'v':
if (showReadings >= 3)
{
showReadings = 0;
// goto dontshowmenu;
break;
}
else
{
showReadings++;
chooseShownReadings();
Serial.write("\x1B\x5B");
Serial.write("1F");//scroll up one line
Serial.write("\x1B\x5B");
Serial.write("2K");//clear line
Serial.write("\x1B\x5B");
Serial.write("1F");//scroll up one line
Serial.write("\x1B\x5B");
Serial.write("2K");//clear line
goto dontshowmenu;
//break;
}
case 'n': case 'n':
@ -129,6 +158,9 @@ menu:
Serial.print("\n\n\rChip Status\n\r"); Serial.print("\n\n\rChip Status\n\r");
printChipStatus(); printChipStatus();
Serial.print("\n\n\r"); Serial.print("\n\n\r");
Serial.print("Revision ");
Serial.print(revisionNumber);
Serial.print("\n\n\r");
break; break;
case 'm': case 'm':
@ -142,11 +174,11 @@ menu:
break; break;
} }
// case 'a': // case 'a':
// { // {
// resetArduino(); // reset works // resetArduino(); // reset works
// // uploadArduino(); //this is unwritten // // uploadArduino(); //this is unwritten
// } // }
case 'f': case 'f':
digitalWrite(RESETPIN, HIGH); digitalWrite(RESETPIN, HIGH);