1
0
mirror of synced 2024-11-14 18:57:39 +01:00
Retrieval-based-Voice-Conve.../infer_uvr5.py

302 lines
12 KiB
Python
Raw Normal View History

import os, sys, torch, warnings, pdb
2023-05-28 16:58:33 +02:00
now_dir = os.getcwd()
sys.path.append(now_dir)
from json import load as ll
2023-03-31 11:54:38 +02:00
warnings.filterwarnings("ignore")
import librosa
import importlib
import numpy as np
import hashlib, math
2023-03-31 11:54:38 +02:00
from tqdm import tqdm
from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
2023-03-31 11:54:38 +02:00
from uvr5_pack.lib_v5.model_param_init import ModelParameters
2023-05-28 17:40:54 +02:00
import soundfile as sf
2023-05-28 16:58:33 +02:00
from uvr5_pack.lib_v5.nets_new import CascadedNet
from uvr5_pack.lib_v5 import nets_61968KB as nets
class _audio_pre_:
def __init__(self, agg, model_path, device, is_half):
2023-03-31 11:54:38 +02:00
self.model_path = model_path
self.device = device
self.data = {
# Processing Options
"postprocess": False,
"tta": False,
2023-03-31 11:54:38 +02:00
# Constants
"window_size": 512,
2023-04-27 17:34:03 +02:00
"agg": agg,
"high_end_process": "mirroring",
2023-03-31 11:54:38 +02:00
}
2023-05-28 16:58:33 +02:00
mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json")
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
cpk = torch.load(model_path, map_location="cpu")
2023-03-31 11:54:38 +02:00
model.load_state_dict(cpk)
model.eval()
if is_half:
model = model.half().to(device)
else:
model = model.to(device)
2023-03-31 11:54:38 +02:00
self.mp = mp
self.model = model
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"):
if ins_root is None and vocal_root is None:
return "No save root."
name = os.path.basename(music_file)
if ins_root is not None:
os.makedirs(ins_root, exist_ok=True)
if vocal_root is not None:
os.makedirs(vocal_root, exist_ok=True)
2023-03-31 11:54:38 +02:00
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(self.mp.param["band"])
2023-03-31 11:54:38 +02:00
# print(bands_n)
for d in range(bands_n, 0, -1):
bp = self.mp.param["band"][d]
if d == bands_n: # high-end band
(
X_wave[d],
_,
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug应该上ffmpeg读取但是太麻烦了弃坑
music_file,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
2023-03-31 11:54:38 +02:00
if X_wave[d].ndim == 1:
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.core.resample(
X_wave[d + 1],
self.mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
2023-03-31 11:54:38 +02:00
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
X_wave[d],
bp["hl"],
bp["n_fft"],
self.mp.param["mid_side"],
self.mp.param["mid_side_b2"],
self.mp.param["reverse"],
)
2023-03-31 11:54:38 +02:00
# pdb.set_trace()
if d == bands_n and self.data["high_end_process"] != "none":
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
)
input_high_end = X_spec_s[d][
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
]
2023-03-31 11:54:38 +02:00
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
aggresive_set = float(self.data["agg"] / 100)
aggressiveness = {
"value": aggresive_set,
"split_bin": self.mp.param["band"][1]["crop_stop"],
}
2023-03-31 11:54:38 +02:00
with torch.no_grad():
pred, X_mag, X_phase = inference(
X_spec_m, self.device, self.model, aggressiveness, self.data
)
2023-03-31 11:54:38 +02:00
# Postprocess
if self.data["postprocess"]:
2023-03-31 11:54:38 +02:00
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if ins_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
y_spec_m, self.mp, input_high_end_h, input_high_end_
)
2023-03-31 11:54:38 +02:00
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
2023-05-28 17:40:54 +02:00
sf.write(
os.path.join(
ins_root,
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
),
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
) #
if vocal_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
v_spec_m, self.mp, input_high_end_h, input_high_end_
)
2023-03-31 11:54:38 +02:00
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
2023-05-28 17:40:54 +02:00
sf.write(
os.path.join(
vocal_root, "vocal_{}_{}.{}".format(name, self.data["agg"], format)
),
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
)
2023-05-28 16:58:33 +02:00
class _audio_pre_new:
def __init__(self, agg, model_path, device, is_half):
self.model_path = model_path
self.device = device
self.data = {
# Processing Options
"postprocess": False,
"tta": False,
# Constants
"window_size": 512,
"agg": agg,
"high_end_process": "mirroring",
}
mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json")
nout = 64 if "DeReverb" in model_path else 48
model = CascadedNet(mp.param["bins"] * 2, nout)
2023-05-28 16:58:33 +02:00
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
model.eval()
if is_half:
model = model.half().to(device)
else:
model = model.to(device)
self.mp = mp
self.model = model
def _path_audio_(
self, music_file, vocal_root=None, ins_root=None, format="flac"
): # 3个VR模型vocal和ins是反的
2023-05-28 16:58:33 +02:00
if ins_root is None and vocal_root is None:
return "No save root."
name = os.path.basename(music_file)
if ins_root is not None:
os.makedirs(ins_root, exist_ok=True)
if vocal_root is not None:
os.makedirs(vocal_root, exist_ok=True)
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(self.mp.param["band"])
# print(bands_n)
for d in range(bands_n, 0, -1):
bp = self.mp.param["band"][d]
if d == bands_n: # high-end band
(
X_wave[d],
_,
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug应该上ffmpeg读取但是太麻烦了弃坑
music_file,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
if X_wave[d].ndim == 1:
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.core.resample(
X_wave[d + 1],
self.mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
X_wave[d],
bp["hl"],
bp["n_fft"],
self.mp.param["mid_side"],
self.mp.param["mid_side_b2"],
self.mp.param["reverse"],
)
# pdb.set_trace()
if d == bands_n and self.data["high_end_process"] != "none":
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
)
input_high_end = X_spec_s[d][
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
]
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
aggresive_set = float(self.data["agg"] / 100)
aggressiveness = {
"value": aggresive_set,
"split_bin": self.mp.param["band"][1]["crop_stop"],
}
with torch.no_grad():
pred, X_mag, X_phase = inference(
X_spec_m, self.device, self.model, aggressiveness, self.data
)
# Postprocess
if self.data["postprocess"]:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if ins_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
y_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
2023-05-28 17:40:54 +02:00
sf.write(
2023-05-28 16:58:33 +02:00
os.path.join(
ins_root,
"main_vocal_{}_{}.{}".format(name, self.data["agg"], format),
2023-05-28 16:58:33 +02:00
),
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
2023-05-28 16:58:33 +02:00
) #
if vocal_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
v_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
2023-05-28 17:40:54 +02:00
sf.write(
2023-05-28 16:58:33 +02:00
os.path.join(
vocal_root, "others_{}_{}.{}".format(name, self.data["agg"], format)
2023-05-28 16:58:33 +02:00
),
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
2023-05-28 16:58:33 +02:00
)
2023-03-31 11:54:38 +02:00
if __name__ == "__main__":
device = "cuda"
is_half = True
2023-05-28 16:58:33 +02:00
# model_path = "uvr5_weights/2_HP-UVR.pth"
# model_path = "uvr5_weights/VR-DeEchoDeReverb.pth"
# model_path = "uvr5_weights/VR-DeEchoNormal.pth"
model_path = "uvr5_weights/DeEchoNormal.pth"
# pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True,agg=10)
pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True, agg=10)
2023-05-28 16:58:33 +02:00
audio_path = "雪雪伴奏对消HP5.wav"
save_path = "opt"
pre_fun._path_audio_(audio_path, save_path, save_path)