1
0
mirror of synced 2024-11-24 07:30:16 +01:00

Add files via upload

This commit is contained in:
RVC-Boss 2023-05-28 22:58:33 +08:00 committed by GitHub
parent 7789c46ded
commit f1730d42d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 455 additions and 56 deletions

198
MDXNet.py Normal file
View File

@ -0,0 +1,198 @@
import soundfile as sf
import torch,pdb,time,argparse,os,warnings,sys,librosa
import numpy as np
import onnxruntime as ort
from scipy.io.wavfile import write
from tqdm import tqdm
import torch
import torch.nn as nn
dim_c = 4
class Conv_TDF_net_trim():
def __init__(self, device, model_name, target_name,
L, dim_f, dim_t, n_fft, hop=1024):
super(Conv_TDF_net_trim, self).__init__()
self.dim_f = dim_f
self.dim_t = 2 ** dim_t
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
self.target_name = target_name
self.blender = 'blender' in model_name
out_c = dim_c * 4 if target_name == '*' else dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, dim_c, self.n_bins, self.dim_t])
return x[:, :, :self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
c = 4 * 2 if self.target_name == '*' else 2
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1, c, self.chunk_size])
def get_models(device, dim_f, dim_t, n_fft):
return Conv_TDF_net_trim(
device=device,
model_name='Conv-TDF', target_name='vocals',
L=11,
dim_f=dim_f, dim_t=dim_t,
n_fft=n_fft
)
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class Predictor:
def __init__(self,args):
self.args=args
self.model_ = get_models(device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft)
self.model = ort.InferenceSession(os.path.join(args.onnx,self.model_.target_name+'.onnx'), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
print('onnx load done')
def demix(self, mix):
samples = mix.shape[-1]
margin = self.args.margin
chunk_size = self.args.chunks*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
segmented_mix = {}
if self.args.chunks == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
sources = self.demix_base(segmented_mix, margin_size=margin)
'''
mix:(2,big_sample)
segmented_mix:offset->(2,small_sample)
sources:(1,2,big_sample)
'''
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
progress_bar = tqdm(total=len(mixes))
progress_bar.set_description("Processing")
for mix in mixes:
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
model=self.model_
trim = model.n_fft//2
gen_size = model.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.model
spek = model.stft(mix_waves)
if self.args.denoise:
spec_pred = -_ort.run(None, {'input': -spek.cpu().numpy()})[0]*0.5+_ort.run(None, {'input': spek.cpu().numpy()})[0]*0.5
tar_waves = model.istft(torch.tensor(spec_pred))
else:
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:,start:end])
progress_bar.update(1)
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
# del self.model
progress_bar.close()
return _sources
def prediction(self, m,vocal_root,others_root):
os.makedirs(vocal_root,exist_ok=True)
os.makedirs(others_root,exist_ok=True)
basename = os.path.basename(m)
mix, rate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
mix = mix.T
sources = self.demix(mix.T)
opt=sources[0].T
sf.write("%s/%s_main_vocal.wav"%(vocal_root,basename), mix-opt, rate)
sf.write("%s/%s_others.wav"%(others_root,basename), opt , rate)
class MDXNetDereverb():
def __init__(self,chunks):
self.onnx="uvr5_weights/onnx_dereverb_By_FoxJoy"
self.shifts=10#'Predict with randomised equivariant stabilisation'
self.mixing="min_mag"#['default','min_mag','max_mag']
self.chunks=chunks
self.margin=44100
self.dim_t=9
self.dim_f=3072
self.n_fft=6144
self.denoise=True
self.pred=Predictor(self)
def _path_audio_(self,input,vocal_root,others_root):
self.pred.prediction(input,vocal_root,others_root)
if __name__ == '__main__':
dereverb=MDXNetDereverb(15)
from time import time as ttime
t0=ttime()
dereverb._path_audio_(
"雪雪伴奏对消HP5.wav",
"vocal",
"others",
)
t1=ttime()
print(t1-t0)
'''
runtime\python.exe MDXNet.py
6G:
15/9:0.8G->6.8G
14:0.8G->6.5G
25:
half15:0.7G->6.6G,22.69s
fp32-15:0.7G->6.6G,20.85s
'''

View File

@ -21,6 +21,7 @@ warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
import ffmpeg
from MDXNet import MDXNetDereverb
i18n = I18nAuto()
i18n.print()
@ -82,7 +83,7 @@ import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config
from infer_uvr5 import _audio_pre_
from infer_uvr5 import _audio_pre_,_audio_pre_new
from my_utils import load_audio
from train.process_ckpt import show_info, change_info, merge, extract_small_model
@ -133,7 +134,7 @@ for root, dirs, files in os.walk(index_root, topdown=False):
index_paths.append("%s/%s" % (root, name))
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth"):
if name.endswith(".pth")or "onnx"in name:
uvr5_names.append(name.replace(".pth", ""))
@ -150,6 +151,7 @@ def vc_single(
filter_radius,
resample_sr,
rms_mix_rate,
protect
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version
if input_audio_path is None:
@ -197,6 +199,7 @@ def vc_single(
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file,
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
@ -232,6 +235,7 @@ def vc_multi(
filter_radius,
resample_sr,
rms_mix_rate,
protect
):
try:
dir_path = (
@ -262,6 +266,7 @@ def vc_multi(
filter_radius,
resample_sr,
rms_mix_rate,
protect
)
if "Success" in info:
try:
@ -288,12 +293,16 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
save_root_ins = (
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
)
pre_fun = _audio_pre_(
agg=int(agg),
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
device=config.device,
is_half=config.is_half,
)
if(model_name=="onnx_dereverb_By_FoxJoy"):
pre_fun=MDXNetDereverb(15)
else:
func=_audio_pre_ if "DeEcho"not in model_name else _audio_pre_new
pre_fun = func(
agg=int(agg),
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
device=config.device,
is_half=config.is_half,
)
if inp_root != "":
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
else:
@ -336,8 +345,12 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
yield "\n".join(infos)
finally:
try:
del pre_fun.model
del pre_fun
if (model_name == "onnx_dereverb_By_FoxJoy"):
del pre_fun.pred.model
del pre_fun.pred.model_
else:
del pre_fun.model
del pre_fun
except:
traceback.print_exc()
print("clean_empty_cache")
@ -790,7 +803,7 @@ def train_index(exp_dir1, version19):
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
% (exp_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
infos.append("adding")
@ -801,11 +814,11 @@ def train_index(exp_dir1, version19):
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
% (exp_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
infos.append(
"成功构建索引added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
% (n_ivf, index_ivf.nprobe,exp_dir1, version19)
)
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
@ -1030,7 +1043,7 @@ def train1key(
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
% (model_log_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
yield get_info_str("adding index")
batch_size_add = 8192
@ -1039,11 +1052,11 @@ def train1key(
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
% (model_log_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
% (n_ivf, index_ivf.nprobe, exp_dir1,version19)
)
yield get_info_str(i18n("全流程结束!"))
@ -1161,8 +1174,8 @@ with gr.Blocks() as app:
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
)
f0method0 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
choices=["pm", "harvest"],
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
choices=["pm", "harvest","crepe"],
value="pm",
interactive=True,
)
@ -1197,9 +1210,10 @@ with gr.Blocks() as app:
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.76,
value=0.88,
interactive=True,
)
with gr.Column():
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
@ -1215,9 +1229,17 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
value=0.33,
step=0.01,
interactive=True,
)
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary")
with gr.Column():
with gr.Row():
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
but0.click(
@ -1235,6 +1257,7 @@ with gr.Blocks() as app:
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0
],
[vc_output1, vc_output2],
)
@ -1249,8 +1272,8 @@ with gr.Blocks() as app:
)
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
f0method1 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
choices=["pm", "harvest"],
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
choices=["pm", "harvest","crepe"],
value="pm",
interactive=True,
)
@ -1285,6 +1308,7 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
with gr.Column():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
@ -1300,6 +1324,14 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
value=0.33,
step=0.01,
interactive=True,
)
with gr.Column():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
@ -1308,8 +1340,9 @@ with gr.Blocks() as app:
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
with gr.Row():
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc_multi,
[
@ -1326,14 +1359,26 @@ with gr.Blocks() as app:
filter_radius1,
resample_sr1,
rms_mix_rate1,
protect1
],
[vc_output3],
)
with gr.TabItem(i18n("伴奏人声分离")):
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=i18n(
"人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)"
"人声伴奏分离批量处理, 使用UVR5模型。 <br>"
"合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>"
"模型分为三类: <br>"
"1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>"
"2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> "
"3、去混响、去延迟模型by FoxJoy<br>"
"(1)MDX-Net:对于双通道混响是最好的选择,不能去除单通道混响;<br>"
" (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>"
"去混响/去延迟,附:<br>"
"1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>"
"2、MDX-Net-Dereverb模型挺慢的<br>"
"3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
)
)
with gr.Row():
@ -1384,7 +1429,7 @@ with gr.Blocks() as app:
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
sr2 = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
choices=["40k", "48k"],
value="40k",
interactive=True,
)

View File

@ -1,5 +1,7 @@
import os, sys, torch, warnings, pdb
now_dir = os.getcwd()
sys.path.append(now_dir)
from json import load as ll
warnings.filterwarnings("ignore")
import librosa
import importlib
@ -10,7 +12,8 @@ from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
from uvr5_pack.lib_v5.model_param_init import ModelParameters
from scipy.io import wavfile
from uvr5_pack.lib_v5.nets_new import CascadedNet
from uvr5_pack.lib_v5 import nets_61968KB as nets
class _audio_pre_:
def __init__(self, agg, model_path, device, is_half):
@ -25,28 +28,7 @@ class _audio_pre_:
"agg": agg,
"high_end_process": "mirroring",
}
nn_arch_sizes = [
31191, # default
33966,
61968,
123821,
123812,
537238, # custom
]
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
model_size = math.ceil(os.stat(model_path).st_size / 1024)
nn_architecture = "{}KB".format(
min(nn_arch_sizes, key=lambda x: abs(x - model_size))
)
nets = importlib.import_module(
"uvr5_pack.lib_v5.nets"
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
package=None,
)
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
param_name, model_params_d = _get_name_params(model_path, model_hash)
mp = ModelParameters(model_params_d)
mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json")
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
@ -164,12 +146,148 @@ class _audio_pre_:
(np.array(wav_vocals) * 32768).astype("int16"),
)
class _audio_pre_new:
def __init__(self, agg, model_path, device, is_half):
self.model_path = model_path
self.device = device
self.data = {
# Processing Options
"postprocess": False,
"tta": False,
# Constants
"window_size": 512,
"agg": agg,
"high_end_process": "mirroring",
}
mp=ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json")
nout=64 if "DeReverb"in model_path else 48
model = CascadedNet(mp.param["bins"] * 2,nout)
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
model.eval()
if is_half:
model = model.half().to(device)
else:
model = model.to(device)
self.mp = mp
self.model = model
def _path_audio_(self, music_file, vocal_root=None, ins_root=None):#3个VR模型vocal和ins是反的
if ins_root is None and vocal_root is None:
return "No save root."
name = os.path.basename(music_file)
if ins_root is not None:
os.makedirs(ins_root, exist_ok=True)
if vocal_root is not None:
os.makedirs(vocal_root, exist_ok=True)
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(self.mp.param["band"])
# print(bands_n)
for d in range(bands_n, 0, -1):
bp = self.mp.param["band"][d]
if d == bands_n: # high-end band
(
X_wave[d],
_,
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug应该上ffmpeg读取但是太麻烦了弃坑
music_file,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
if X_wave[d].ndim == 1:
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.core.resample(
X_wave[d + 1],
self.mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
X_wave[d],
bp["hl"],
bp["n_fft"],
self.mp.param["mid_side"],
self.mp.param["mid_side_b2"],
self.mp.param["reverse"],
)
# pdb.set_trace()
if d == bands_n and self.data["high_end_process"] != "none":
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
)
input_high_end = X_spec_s[d][
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
]
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
aggresive_set = float(self.data["agg"] / 100)
aggressiveness = {
"value": aggresive_set,
"split_bin": self.mp.param["band"][1]["crop_stop"],
}
with torch.no_grad():
pred, X_mag, X_phase = inference(
X_spec_m, self.device, self.model, aggressiveness, self.data
)
# Postprocess
if self.data["postprocess"]:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if ins_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
y_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
wavfile.write(
os.path.join(
ins_root, "main_vocal_{}_{}.wav".format(name, self.data["agg"])
),
self.mp.param["sr"],
(np.array(wav_instrument) * 32768).astype("int16"),
) #
if vocal_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
v_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
wavfile.write(
os.path.join(
vocal_root, "others_{}_{}.wav".format(name, self.data["agg"])
),
self.mp.param["sr"],
(np.array(wav_vocals) * 32768).astype("int16"),
)
if __name__ == "__main__":
device = "cuda"
is_half = True
model_path = "uvr5_weights/2_HP-UVR.pth"
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
audio_path = "神女劈观.aac"
# model_path = "uvr5_weights/2_HP-UVR.pth"
# model_path = "uvr5_weights/VR-DeEchoDeReverb.pth"
# model_path = "uvr5_weights/VR-DeEchoNormal.pth"
model_path = "uvr5_weights/DeEchoNormal.pth"
# pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True,agg=10)
pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True,agg=10)
audio_path = "雪雪伴奏对消HP5.wav"
save_path = "opt"
pre_fun._path_audio_(audio_path, save_path, save_path)

View File

@ -2,7 +2,7 @@ import numpy as np, parselmouth, torch, pdb
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa
import pyworld, os, traceback, faiss, librosa,torchcrepe
from scipy import signal
from functools import lru_cache
@ -103,6 +103,27 @@ class VC(object):
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe":
model = "full"
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
@ -141,6 +162,7 @@ class VC(object):
big_npy,
index_rate,
version,
protect
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
@ -162,7 +184,8 @@ class VC(object):
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if(protect<0.5):
feats0=feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
@ -188,6 +211,8 @@ class VC(object):
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if(protect<0.5):
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
@ -195,6 +220,14 @@ class VC(object):
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if(protect<0.5):
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats=feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
if pitch != None and pitchf != None:
@ -235,6 +268,7 @@ class VC(object):
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None,
):
if (
@ -322,6 +356,7 @@ class VC(object):
big_npy,
index_rate,
version,
protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
@ -338,6 +373,7 @@ class VC(object):
big_npy,
index_rate,
version,
protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
s = t
@ -355,6 +391,7 @@ class VC(object):
big_npy,
index_rate,
version,
protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
@ -371,6 +408,7 @@ class VC(object):
big_npy,
index_rate,
version,
protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
audio_opt = np.concatenate(audio_opt)