parent
dace5a6f99
commit
b3f22dcdef
10
gui_v1.py
10
gui_v1.py
@ -358,7 +358,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
if event == "start_vc" and self.flag_vc == False:
|
||||
if self.set_values(values) == True:
|
||||
logger.info("Use CUDA:" + str(torch.cuda.is_available()))
|
||||
logger.info("Use CUDA: %b", torch.cuda.is_available())
|
||||
self.start_vc()
|
||||
settings = {
|
||||
"pth_path": values["pth_path"],
|
||||
@ -625,7 +625,7 @@ if __name__ == "__main__":
|
||||
sola_offset = sola_offset.item()
|
||||
else:
|
||||
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||||
logger.debug("sola_offset =" + str(int(sola_offset)))
|
||||
logger.debug("sola_offset = %d", int(sola_offset))
|
||||
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
||||
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
||||
@ -665,7 +665,7 @@ if __name__ == "__main__":
|
||||
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||
total_time = time.perf_counter() - start_time
|
||||
self.window["infer_time"].update(int(total_time * 1000))
|
||||
logger.info("Infer time:" + str(total_time))
|
||||
logger.info("Infer time: %.2f", total_time)
|
||||
|
||||
def get_devices(self, update: bool = True):
|
||||
"""获取设备列表"""
|
||||
@ -719,10 +719,10 @@ if __name__ == "__main__":
|
||||
output_devices.index(output_device)
|
||||
]
|
||||
logger.info(
|
||||
"Input device:" + str(sd.default.device[0]) + ":" + str(input_device)
|
||||
"Input device: %s:%d", str(sd.default.device[0]), input_device
|
||||
)
|
||||
logger.info(
|
||||
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
|
||||
"Output device: %s:%d", str(sd.default.device[1]), output_device
|
||||
)
|
||||
|
||||
gui = GUI()
|
||||
|
78
infer-web.py
78
infer-web.py
@ -370,9 +370,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
||||
yield log
|
||||
|
||||
|
||||
def change_sr2(sr2, if_f0_3, version19):
|
||||
path_str = "" if version19 == "v1" else "_v2"
|
||||
f0_str = "f0" if if_f0_3 else ""
|
||||
def get_pretrained_models(path_str, f0_str, sr2):
|
||||
if_pretrained_generator_exist = os.access(
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||||
)
|
||||
@ -381,13 +379,13 @@ def change_sr2(sr2, if_f0_3, version19):
|
||||
)
|
||||
if not if_pretrained_generator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
||||
path_str, f0_str, sr2
|
||||
)
|
||||
if not if_pretrained_discriminator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
||||
path_str, f0_str, sr2
|
||||
)
|
||||
return (
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
||||
@ -399,6 +397,12 @@ def change_sr2(sr2, if_f0_3, version19):
|
||||
)
|
||||
|
||||
|
||||
def change_sr2(sr2, if_f0_3, version19):
|
||||
path_str = "" if version19 == "v1" else "_v2"
|
||||
f0_str = "f0" if if_f0_3 else ""
|
||||
return get_pretrained_models(path_str, f0_str, sr2)
|
||||
|
||||
|
||||
def change_version19(sr2, if_f0_3, version19):
|
||||
path_str = "" if version19 == "v1" else "_v2"
|
||||
if sr2 == "32k" and version19 == "v1":
|
||||
@ -409,72 +413,18 @@ def change_version19(sr2, if_f0_3, version19):
|
||||
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
||||
)
|
||||
f0_str = "f0" if if_f0_3 else ""
|
||||
if_pretrained_generator_exist = os.access(
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||||
)
|
||||
if_pretrained_discriminator_exist = os.access(
|
||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||||
)
|
||||
if not if_pretrained_generator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
)
|
||||
if not if_pretrained_discriminator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
)
|
||||
return (
|
||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
||||
if if_pretrained_generator_exist
|
||||
else "",
|
||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
||||
if if_pretrained_discriminator_exist
|
||||
else "",
|
||||
*get_pretrained_models(path_str, f0_str, sr2),
|
||||
to_return_sr2,
|
||||
)
|
||||
|
||||
|
||||
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
||||
path_str = "" if version19 == "v1" else "_v2"
|
||||
if_pretrained_generator_exist = os.access(
|
||||
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK
|
||||
)
|
||||
if_pretrained_discriminator_exist = os.access(
|
||||
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
|
||||
)
|
||||
if not if_pretrained_generator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
)
|
||||
if not if_pretrained_discriminator_exist:
|
||||
logger.warn(
|
||||
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2),
|
||||
"not exist, will not use pretrained model",
|
||||
)
|
||||
if if_f0_3:
|
||||
return (
|
||||
{"visible": True, "__type__": "update"},
|
||||
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2)
|
||||
if if_pretrained_generator_exist
|
||||
else "",
|
||||
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2)
|
||||
if if_pretrained_discriminator_exist
|
||||
else "",
|
||||
)
|
||||
return (
|
||||
{"visible": False, "__type__": "update"},
|
||||
("assets/pretrained%s/G%s.pth" % (path_str, sr2))
|
||||
if if_pretrained_generator_exist
|
||||
else "",
|
||||
("assets/pretrained%s/D%s.pth" % (path_str, sr2))
|
||||
if if_pretrained_discriminator_exist
|
||||
else "",
|
||||
{"visible": if_f0_3, "__type__": "update"}, *get_pretrained_models(path_str, "f0", sr2)
|
||||
)
|
||||
|
||||
|
||||
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
||||
def click_train(
|
||||
exp_dir1,
|
||||
@ -561,7 +511,7 @@ def click_train(
|
||||
logger.debug("Write filelist done")
|
||||
# 生成config#无需生成config
|
||||
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||||
logger.info("Use gpus:", gpus16)
|
||||
logger.info("Use gpus: %s", str(gpus16))
|
||||
if pretrained_G14 == "":
|
||||
logger.info("No pretrained Generator")
|
||||
if pretrained_D15 == "":
|
||||
|
@ -617,7 +617,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
|
||||
"gin_channels: " + gin_channels + ", self.spk_embed_dim: " + self.spk_embed_dim
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
@ -735,7 +735,7 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
|
||||
"gin_channels: " + gin_channels + ", self.spk_embed_dim: " + self.spk_embed_dim
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
@ -850,7 +850,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
|
||||
"gin_channels: " + gin_channels + ", self.spk_embed_dim: " + self.spk_embed_dim
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
@ -958,7 +958,7 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
logger.debug(
|
||||
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
|
||||
"gin_channels: " + gin_channels + ", self.spk_embed_dim: " + self.spk_embed_dim
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
|
@ -621,7 +621,7 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
self.speaker_map = None
|
||||
logger.debug(
|
||||
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
|
||||
"gin_channels: " + gin_channels + ", self.spk_embed_dim: " + self.spk_embed_dim
|
||||
)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
|
@ -695,4 +695,4 @@ if __name__ == "__main__":
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||
t1 = ttime()
|
||||
logger.info(f0.shape, t1 - t0)
|
||||
logger.info("%s %.2f", f0.shape, t1 - t0)
|
||||
|
@ -113,7 +113,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
logger.warn(spec_filename, traceback.format_exc())
|
||||
logger.warn("%s %s", spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
@ -305,7 +305,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
logger.warn(spec_filename, traceback.format_exc())
|
||||
logger.warn("%s %s", spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
|
@ -54,9 +54,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
"""
|
||||
# Validation
|
||||
if torch.min(y) < -1.07:
|
||||
logger.debug("min value is ", torch.min(y))
|
||||
logger.debug("min value is %s", str(torch.min(y)))
|
||||
if torch.max(y) > 1.07:
|
||||
logger.debug("max value is ", torch.max(y))
|
||||
logger.debug("max value is %s", str(torch.max(y)))
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
|
@ -35,12 +35,12 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
logger.warn(
|
||||
"shape-%s-mismatch. need: %s, get: %s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
, k, state_dict[k].shape, saved_state_dict[k].shape
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
||||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
@ -111,12 +111,12 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
logger.warn(
|
||||
"shape-%s-mismatch|need-%s|get-%s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
, k, state_dict[k].shape, saved_state_dict[k].shape
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
||||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
|
Loading…
Reference in New Issue
Block a user