1
0
mirror of synced 2024-11-15 03:07:40 +01:00

Add files via upload

This commit is contained in:
RVC-Boss 2023-05-28 23:00:29 +08:00 committed by GitHub
parent f1730d42d4
commit c93940a25d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 250 additions and 0 deletions

View File

@ -0,0 +1,126 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
def __call__(self, x):
h = self.conv1(x)
h = self.conv2(h)
return h
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv1(x)
# h = self.conv2(h)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
self.conv3 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
)
self.conv4 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
)
self.conv5 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
)
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
out = self.bottleneck(out)
if self.dropout is not None:
out = self.dropout(out)
return out
class LSTMModule(nn.Module):
def __init__(self, nin_conv, nin_lstm, nout_lstm):
super(LSTMModule, self).__init__()
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
self.lstm = nn.LSTM(
input_size=nin_lstm,
hidden_size=nout_lstm // 2,
bidirectional=True
)
self.dense = nn.Sequential(
nn.Linear(nout_lstm, nin_lstm),
nn.BatchNorm1d(nin_lstm),
nn.ReLU()
)
def forward(self, x):
N, _, nbins, nframes = x.size()
h = self.conv(x)[:, 0] # N, nbins, nframes
h = h.permute(2, 0, 1) # nframes, N, nbins
h, _ = self.lstm(h)
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
h = h.reshape(nframes, N, 1, nbins)
h = h.permute(1, 2, 3, 0)
return h

View File

@ -0,0 +1,124 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_new as layers
class BaseNet(nn.Module):
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
super(BaseNet, self).__init__()
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
def __call__(self, x):
e1 = self.enc1(x)
e2 = self.enc2(e1)
e3 = self.enc3(e2)
e4 = self.enc4(e3)
e5 = self.enc5(e4)
h = self.aspp(e5)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
h = self.dec1(h, e1)
return h
class CascadedNet(nn.Module):
def __init__(self, n_fft, nout=32, nout_lstm=128):
super(CascadedNet, self).__init__()
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.nin_lstm = self.max_bin // 2
self.offset = 64
self.stg1_low_band_net = nn.Sequential(
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
)
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
self.stg2_low_band_net = nn.Sequential(
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
)
self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
self.out = nn.Conv2d(nout, 2, 1, bias=False)
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
def forward(self, x):
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
l1_in = x[:, :, :bandw]
h1_in = x[:, :, bandw:]
l1 = self.stg1_low_band_net(l1_in)
h1 = self.stg1_high_band_net(h1_in)
aux1 = torch.cat([l1, h1], dim=2)
l2_in = torch.cat([l1_in, l1], dim=1)
h2_in = torch.cat([h1_in, h1], dim=1)
l2 = self.stg2_low_band_net(l2_in)
h2 = self.stg2_high_band_net(h2_in)
aux2 = torch.cat([l2, h2], dim=2)
f3_in = torch.cat([x, aux1, aux2], dim=1)
f3 = self.stg3_full_band_net(f3_in)
mask = torch.sigmoid(self.out(f3))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate'
)
if self.training:
aux = torch.cat([aux1, aux2], dim=1)
aux = torch.sigmoid(self.aux_out(aux))
aux = F.pad(
input=aux,
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
mode='replicate'
)
return mask, aux
else:
return mask
def predict_mask(self, x):
mask = self.forward(x)
if self.offset > 0:
mask = mask[:, :, :, self.offset:-self.offset]
assert mask.size()[3] > 0
return mask
def predict(self, x,aggressiveness=None):
mask = self.forward(x)
pred_mag = x * mask
if self.offset > 0:
pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
assert pred_mag.size()[3] > 0
return pred_mag