9b513a2375
* add training tips in ja * add english edition(using google translate)
54 lines
4.8 KiB
Markdown
54 lines
4.8 KiB
Markdown
RVCの訓練における説明、およびTIPS
|
|
===============================
|
|
本TIPSではどのようにデータの訓練が行われているかを説明します。
|
|
|
|
# 訓練の流れ
|
|
GUIの訓練タブのstepに沿って説明します。
|
|
|
|
## step1
|
|
実験名の設定を行います。また、モデルにピッチを考慮させるかもここで設定できます。
|
|
各実験のデータは`/logs/実験名/`に配置されます。
|
|
|
|
## step2a
|
|
音声の読み込みと前処理を行います。
|
|
|
|
### load audio
|
|
音声のあるフォルダを指定すると、そのフォルダ内にある音声ファイルを自動で読み込みます。
|
|
例えば`C:Users\hoge\voices`を指定した場合、`C:Users\hoge\voices\voice.mp3`は読み込まれますが、`C:Users\hoge\voices\dir\voice.mp3`は読み込まれません。
|
|
|
|
音声の読み込みには内部でffmpegを利用しているので、ffmpegで対応している拡張子であれば自動的に読み込まれます。
|
|
ffmpegでint16に変換した後、float32に変換し、-1 ~ 1の間に正規化されます。
|
|
|
|
### denoising
|
|
音声についてscipyのfiltfiltによる平滑化を行います。
|
|
|
|
### 音声の分割
|
|
入力した音声はまず、一定期間(max_sil_kept=5秒?)より長く無音が続く部分を検知して音声を分割します。無音で音声を分割した後は、0.3秒のoverlapを含む4秒ごとに音声を分割します。4秒以内に区切られた音声は、音量の正規化を行った後wavファイルを`/logs/実験名/0_gt_wavs`に、そこから16kのサンプリングレートに変換して`/logs/実験名/1_16k_wavs`にwavファイルで保存します。
|
|
|
|
## step2b
|
|
### ピッチの抽出
|
|
wavファイルからピッチ(音の高低)の情報を抽出します。parselmouthやpyworldに内蔵されている手法でピッチ情報(=f0)を抽出し、`/logs/実験名/2a_f0`に保存します。その後、ピッチ情報を対数で変換して1~255の整数に変換し、`/logs/実験名/2b-f0nsf`に保存します。
|
|
|
|
### feature_printの抽出
|
|
HuBERTを用いてwavファイルを事前にembeddingに変換します。`/logs/実験名/1_16k_wavs`に保存したwavファイルを読み込み、HuBERTでwavファイルを256次元の特徴量に変換し、npy形式で`/logs/実験名/3_feature256`に保存します。
|
|
|
|
## step3
|
|
モデルのトレーニングを行います。
|
|
### 初心者向け用語解説
|
|
深層学習ではデータセットを分割し、少しずつ学習を進めていきます。一回のモデルの更新(step)では、batch_size個のデータを取り出し予測と誤差の修正を行います。これをデータセットに対して一通り行うと一epochと数えます。
|
|
|
|
そのため、学習時間は 1step当たりの学習時間 x (データセット内のデータ数 ÷ バッチサイズ) x epoch数 かかります。一般にバッチサイズを大きくするほど学習は安定し、(1step当たりの学習時間÷バッチサイズ)は小さくなりますが、その分GPUのメモリを多く使用します。GPUのRAMはnvidia-smiコマンド等で確認できます。実行環境のマシンに合わせてバッチサイズをできるだけ大きくするとより短時間で学習が可能です。
|
|
|
|
### pretrained modelの指定
|
|
RVCではモデルの訓練を0からではなく、事前学習済みの重みから開始するため、少ないデータセットで学習を行えます。デフォルトでは`RVCのある場所/pretrained/f0G40k.pth`と`RVCのある場所/pretrained/f0D40k.pth`を読み込みます。学習時はsave_every_epochごとにモデルのパラメータが`logs/実験名/G_{}.pth`と`logs/実験名/D_{}.pth`に保存されますが、このパスを指定することで学習を再開したり、もしくは違う実験で学習したモデルの重みから学習を開始できます。
|
|
|
|
### indexの学習
|
|
RVCでは学習時に使われたHuBERTの特徴量を保存し、推論時は学習時の特徴量から近い特徴量を探してきて推論を行います。この検索を高速に行うために事前にindexの学習を行います。
|
|
indexの学習には近似近傍探索ライブラリのfaissを用います。`/logs/実験名/3_feature256`の特徴量を読み込み、全て結合させた特徴量を`/logs/実験名/total_fea.npy`として保存、それを用いて学習したindexを`/logs/実験名/add_XXX.index`として保存します。
|
|
|
|
### ボタンの説明
|
|
- モデルのトレーニング: step2bまでを実行した後、このボタンを押すとモデルの学習を行います。
|
|
- 特徴インデックスのトレーニング: モデルのトレーニング後、indexの学習を行います。
|
|
- ワンクリックトレーニング: step2bまでとモデルのトレーニング、特徴インデックスのトレーニングを一括で行います。
|
|
|