1
0
mirror of https://github.com/DarklightGames/io_scene_psk_psa.git synced 2025-02-13 00:24:26 +01:00
io_scene_psk_psa/psa/importer.py

335 lines
16 KiB
Python

import typing
from typing import List, Optional
import bpy
import numpy as np
from bpy.types import FCurve, Object, Context
from mathutils import Vector, Quaternion
from .config import PsaConfig, REMOVE_TRACK_LOCATION, REMOVE_TRACK_ROTATION
from .data import Psa
from .reader import PsaReader
class PsaImportOptions(object):
def __init__(self):
self.should_use_fake_user = False
self.should_stash = False
self.sequence_names = []
self.should_overwrite = False
self.should_write_keyframes = True
self.should_write_metadata = True
self.action_name_prefix = ''
self.should_convert_to_samples = False
self.bone_mapping_mode = 'CASE_INSENSITIVE'
self.fps_source = 'SEQUENCE'
self.fps_custom: float = 30.0
self.should_use_config_file = True
self.psa_config: PsaConfig = PsaConfig()
class ImportBone(object):
def __init__(self, psa_bone: Psa.Bone):
self.psa_bone: Psa.Bone = psa_bone
self.parent: Optional[ImportBone] = None
self.armature_bone = None
self.pose_bone = None
self.original_location: Vector = Vector()
self.original_rotation: Quaternion = Quaternion()
self.post_rotation: Quaternion = Quaternion()
self.fcurves: List[FCurve] = []
def _calculate_fcurve_data(import_bone: ImportBone, key_data: typing.Iterable[float]):
# Convert world-space transforms to local-space transforms.
key_rotation = Quaternion(key_data[0:4])
key_location = Vector(key_data[4:])
q = import_bone.post_rotation.copy()
q.rotate(import_bone.original_rotation)
rotation = q
q = import_bone.post_rotation.copy()
if import_bone.parent is None:
q.rotate(key_rotation.conjugated())
else:
q.rotate(key_rotation)
rotation.rotate(q.conjugated())
location = key_location - import_bone.original_location
location.rotate(import_bone.post_rotation.conjugated())
return rotation.w, rotation.x, rotation.y, rotation.z, location.x, location.y, location.z
class PsaImportResult:
def __init__(self):
self.warnings: List[str] = []
def _get_armature_bone_index_for_psa_bone(psa_bone_name: str, armature_bone_names: List[str], bone_mapping_mode: str = 'EXACT') -> Optional[int]:
"""
@param psa_bone_name: The name of the PSA bone.
@param armature_bone_names: The names of the bones in the armature.
@param bone_mapping_mode: One of 'EXACT' or 'CASE_INSENSITIVE'.
@return: The index of the armature bone that corresponds to the given PSA bone, or None if no such bone exists.
"""
for armature_bone_index, armature_bone_name in enumerate(armature_bone_names):
if bone_mapping_mode == 'CASE_INSENSITIVE':
if armature_bone_name.lower() == psa_bone_name.lower():
return armature_bone_index
else:
if armature_bone_name == psa_bone_name:
return armature_bone_index
return None
def _get_sample_frame_times(source_frame_count: int, frame_step: float) -> typing.Iterable[float]:
# TODO: for correctness, we should also emit the target frame time as well (because the last frame can be a
# fractional frame).
time = 0.0
while time < source_frame_count - 1:
yield time
time += frame_step
yield source_frame_count - 1
def _resample_sequence_data_matrix(sequence_data_matrix: np.ndarray, frame_step: float = 1.0) -> np.ndarray:
"""
Resamples the sequence data matrix to the target frame count.
@param sequence_data_matrix: FxBx7 matrix where F is the number of frames, B is the number of bones, and X is the
number of data elements per bone.
@param frame_step: The step between frames in the resampled sequence.
@return: The resampled sequence data matrix, or sequence_data_matrix if no resampling is necessary.
"""
if frame_step == 1.0:
# No resampling is necessary.
return sequence_data_matrix
source_frame_count, bone_count = sequence_data_matrix.shape[:2]
sample_frame_times = list(_get_sample_frame_times(source_frame_count, frame_step))
target_frame_count = len(sample_frame_times)
resampled_sequence_data_matrix = np.zeros((target_frame_count, bone_count, 7), dtype=float)
for sample_frame_index, sample_frame_time in enumerate(sample_frame_times):
frame_index = int(sample_frame_time)
if sample_frame_time % 1.0 == 0.0:
# Sample time has no fractional part, so just copy the frame.
resampled_sequence_data_matrix[sample_frame_index, :, :] = sequence_data_matrix[frame_index, :, :]
else:
# Sample time has a fractional part, so interpolate between two frames.
next_frame_index = frame_index + 1
for bone_index in range(bone_count):
source_frame_1_data = sequence_data_matrix[frame_index, bone_index, :]
source_frame_2_data = sequence_data_matrix[next_frame_index, bone_index, :]
factor = sample_frame_time - frame_index
q = Quaternion((source_frame_1_data[:4])).slerp(Quaternion((source_frame_2_data[:4])), factor)
q.normalize()
l = Vector(source_frame_1_data[4:]).lerp(Vector(source_frame_2_data[4:]), factor)
resampled_sequence_data_matrix[sample_frame_index, bone_index, :] = q.w, q.x, q.y, q.z, l.x, l.y, l.z
return resampled_sequence_data_matrix
def import_psa(context: Context, psa_reader: PsaReader, armature_object: Object, options: PsaImportOptions) -> PsaImportResult:
result = PsaImportResult()
sequences = [psa_reader.sequences[x] for x in options.sequence_names]
armature_data = typing.cast(bpy.types.Armature, armature_object.data)
# Create an index mapping from bones in the PSA to bones in the target armature.
psa_to_armature_bone_indices = {}
armature_to_psa_bone_indices = {}
armature_bone_names = [x.name for x in armature_data.bones]
psa_bone_names = []
duplicate_mappings = []
for psa_bone_index, psa_bone in enumerate(psa_reader.bones):
psa_bone_name: str = psa_bone.name.decode('windows-1252')
armature_bone_index = _get_armature_bone_index_for_psa_bone(psa_bone_name, armature_bone_names, options.bone_mapping_mode)
if armature_bone_index is not None:
# Ensure that no other PSA bone has been mapped to this armature bone yet.
if armature_bone_index not in armature_to_psa_bone_indices:
psa_to_armature_bone_indices[psa_bone_index] = armature_bone_index
armature_to_psa_bone_indices[armature_bone_index] = psa_bone_index
else:
# This armature bone has already been mapped to a PSA bone.
duplicate_mappings.append((psa_bone_index, armature_bone_index, armature_to_psa_bone_indices[armature_bone_index]))
psa_bone_names.append(armature_bone_names[armature_bone_index])
else:
psa_bone_names.append(psa_bone_name)
# Warn about duplicate bone mappings.
if len(duplicate_mappings) > 0:
for (psa_bone_index, armature_bone_index, mapped_psa_bone_index) in duplicate_mappings:
psa_bone_name = psa_bone_names[psa_bone_index]
armature_bone_name = armature_bone_names[armature_bone_index]
mapped_psa_bone_name = psa_bone_names[mapped_psa_bone_index]
result.warnings.append(f'PSA bone {psa_bone_index} ({psa_bone_name}) could not be mapped to armature bone {armature_bone_index} ({armature_bone_name}) because the armature bone is already mapped to PSA bone {mapped_psa_bone_index} ({mapped_psa_bone_name})')
# Report if there are missing bones in the target armature.
missing_bone_names = set(psa_bone_names).difference(set(armature_bone_names))
if len(missing_bone_names) > 0:
result.warnings.append(
f'The armature \'{armature_object.name}\' is missing {len(missing_bone_names)} bones that exist in '
'the PSA:\n' +
str(list(sorted(missing_bone_names)))
)
del armature_bone_names
# Create intermediate bone data for import operations.
import_bones = []
psa_bone_names_to_import_bones = dict()
for (psa_bone_index, psa_bone), psa_bone_name in zip(enumerate(psa_reader.bones), psa_bone_names):
if psa_bone_index not in psa_to_armature_bone_indices:
# PSA bone does not map to armature bone, skip it and leave an empty bone in its place.
import_bones.append(None)
continue
import_bone = ImportBone(psa_bone)
import_bone.armature_bone = armature_data.bones[psa_bone_name]
import_bone.pose_bone = armature_object.pose.bones[psa_bone_name]
psa_bone_names_to_import_bones[psa_bone_name] = import_bone
import_bones.append(import_bone)
bones_with_missing_parents = []
for import_bone in filter(lambda x: x is not None, import_bones):
armature_bone = import_bone.armature_bone
has_parent = armature_bone.parent is not None
if has_parent:
if armature_bone.parent.name in psa_bone_names:
import_bone.parent = psa_bone_names_to_import_bones[armature_bone.parent.name]
else:
# Add a warning if the parent bone is not in the PSA.
bones_with_missing_parents.append(armature_bone)
# Calculate the original location & rotation of each bone (in world-space maybe?)
if has_parent:
import_bone.original_location = armature_bone.matrix_local.translation - armature_bone.parent.matrix_local.translation
import_bone.original_location.rotate(armature_bone.parent.matrix_local.to_quaternion().conjugated())
import_bone.original_rotation = armature_bone.matrix_local.to_quaternion()
import_bone.original_rotation.rotate(armature_bone.parent.matrix_local.to_quaternion().conjugated())
import_bone.original_rotation.conjugate()
else:
import_bone.original_location = armature_bone.matrix_local.translation.copy()
import_bone.original_rotation = armature_bone.matrix_local.to_quaternion().conjugated()
import_bone.post_rotation = import_bone.original_rotation.conjugated()
# Warn about bones with missing parents.
if len(bones_with_missing_parents) > 0:
count = len(bones_with_missing_parents)
message = f'{count} bone(s) have parents that are not present in the PSA:\n' + str([x.name for x in bones_with_missing_parents])
result.warnings.append(message)
context.window_manager.progress_begin(0, len(sequences))
# Create and populate the data for new sequences.
actions = []
for sequence_index, sequence in enumerate(sequences):
# Add the action.
sequence_name = sequence.name.decode('windows-1252')
action_name = options.action_name_prefix + sequence_name
# Get the bone track flags for this sequence, or an empty dictionary if none exist.
sequence_bone_track_flags = dict()
if sequence_name in options.psa_config.sequence_bone_flags.keys():
sequence_bone_track_flags = options.psa_config.sequence_bone_flags[sequence_name]
if options.should_overwrite and action_name in bpy.data.actions:
action = bpy.data.actions[action_name]
else:
action = bpy.data.actions.new(name=action_name)
# Calculate the target FPS.
match options.fps_source:
case 'CUSTOM':
target_fps = options.fps_custom
case 'SCENE':
target_fps = context.scene.render.fps
case 'SEQUENCE':
target_fps = sequence.fps
case _:
raise ValueError(f'Unknown FPS source: {options.fps_source}')
if options.should_write_keyframes:
# Remove existing f-curves.
action.fcurves.clear()
# Create f-curves for the rotation and location of each bone.
for psa_bone_index, armature_bone_index in psa_to_armature_bone_indices.items():
bone_track_flags = sequence_bone_track_flags.get(psa_bone_index, 0)
import_bone = import_bones[psa_bone_index]
pose_bone = import_bone.pose_bone
rotation_data_path = pose_bone.path_from_id('rotation_quaternion')
location_data_path = pose_bone.path_from_id('location')
add_rotation_fcurves = (bone_track_flags & REMOVE_TRACK_ROTATION) == 0
add_location_fcurves = (bone_track_flags & REMOVE_TRACK_LOCATION) == 0
import_bone.fcurves = [
action.fcurves.new(rotation_data_path, index=0, action_group=pose_bone.name) if add_rotation_fcurves else None, # Qw
action.fcurves.new(rotation_data_path, index=1, action_group=pose_bone.name) if add_rotation_fcurves else None, # Qx
action.fcurves.new(rotation_data_path, index=2, action_group=pose_bone.name) if add_rotation_fcurves else None, # Qy
action.fcurves.new(rotation_data_path, index=3, action_group=pose_bone.name) if add_rotation_fcurves else None, # Qz
action.fcurves.new(location_data_path, index=0, action_group=pose_bone.name) if add_location_fcurves else None, # Lx
action.fcurves.new(location_data_path, index=1, action_group=pose_bone.name) if add_location_fcurves else None, # Ly
action.fcurves.new(location_data_path, index=2, action_group=pose_bone.name) if add_location_fcurves else None, # Lz
]
# Read the sequence data matrix from the PSA.
sequence_data_matrix = psa_reader.read_sequence_data_matrix(sequence_name)
# Convert the sequence's data from world-space to local-space.
for bone_index, import_bone in enumerate(import_bones):
if import_bone is None:
continue
for frame_index in range(sequence.frame_count):
# This bone has writeable keyframes for this frame.
key_data = sequence_data_matrix[frame_index, bone_index]
# Calculate the local-space key data for the bone.
sequence_data_matrix[frame_index, bone_index] = _calculate_fcurve_data(import_bone, key_data)
# Resample the sequence data to the target FPS.
# If the target frame count is the same as the source frame count, this will be a no-op.
resampled_sequence_data_matrix = _resample_sequence_data_matrix(sequence_data_matrix,
frame_step=sequence.fps / target_fps)
# Write the keyframes out.
# Note that the f-curve data consists of alternating time and value data.
target_frame_count = resampled_sequence_data_matrix.shape[0]
fcurve_data = np.zeros(2 * target_frame_count, dtype=float)
fcurve_data[0::2] = range(0, target_frame_count)
for bone_index, import_bone in enumerate(import_bones):
if import_bone is None:
continue
for fcurve_index, fcurve in enumerate(import_bone.fcurves):
if fcurve is None:
continue
fcurve_data[1::2] = resampled_sequence_data_matrix[:, bone_index, fcurve_index]
fcurve.keyframe_points.add(target_frame_count)
fcurve.keyframe_points.foreach_set('co', fcurve_data)
for fcurve_keyframe in fcurve.keyframe_points:
fcurve_keyframe.interpolation = 'LINEAR'
if options.should_convert_to_samples:
# Bake the curve to samples.
for fcurve in action.fcurves:
fcurve.convert_to_samples(start=0, end=sequence.frame_count)
# Write meta-data.
if options.should_write_metadata:
action.psa_export.fps = target_fps
action.use_fake_user = options.should_use_fake_user
actions.append(action)
context.window_manager.progress_update(sequence_index)
# If the user specifies, store the new animations as strips on a non-contributing NLA track.
if options.should_stash:
if armature_object.animation_data is None:
armature_object.animation_data_create()
for action in actions:
nla_track = armature_object.animation_data.nla_tracks.new()
nla_track.name = action.name
nla_track.mute = True
nla_track.strips.new(name=action.name, start=0, action=action)
context.window_manager.progress_end()
return result