ultimatevocalremovergui/inference_v5_ensemble.py

4344 lines
232 KiB
Python
Raw Normal View History

2022-07-23 09:56:57 +02:00
from collections import defaultdict
from datetime import datetime
from demucs.apply import BagOfModels, apply_model
from demucs.hdemucs import HDemucs
from demucs.model_v2 import Demucs
from demucs.pretrained import get_model as _gm
from demucs.tasnet_v2 import ConvTasNet
from demucs.utils import apply_model_v1
from demucs.utils import apply_model_v2
2022-05-11 02:11:40 +02:00
from functools import total_ordering
2022-07-23 09:56:57 +02:00
from lib_v5 import dataset
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
from models import get_models, spec_effects
2022-05-11 02:11:40 +02:00
from pathlib import Path
2022-05-23 04:47:47 +02:00
from random import randrange
2022-07-23 09:56:57 +02:00
from statistics import mode
2022-05-11 02:11:40 +02:00
from tqdm import tqdm
2022-07-23 09:56:57 +02:00
from tqdm import tqdm
from tkinter import filedialog
import tkinter.ttk as ttk
import tkinter.messagebox
import tkinter.filedialog
import tkinter.simpledialog
import tkinter.font
import tkinter as tk
from tkinter import *
from tkinter.tix import *
import lib_v5.filelist
2022-05-11 02:11:40 +02:00
import cv2
2022-07-23 09:56:57 +02:00
import gzip
import hashlib
import importlib
2022-05-11 02:11:40 +02:00
import librosa
2022-07-23 09:56:57 +02:00
import json
import math
2022-05-11 02:11:40 +02:00
import numpy as np
2022-07-23 09:56:57 +02:00
import numpy as np
import onnxruntime as ort
import os
import pathlib
import psutil
import pydub
import re
2022-05-11 02:11:40 +02:00
import shutil
2022-07-23 09:56:57 +02:00
import soundfile as sf
import soundfile as sf
import subprocess
import sys
import time
import time # Timer
2022-05-11 02:11:40 +02:00
import tkinter as tk
2022-07-23 09:56:57 +02:00
import torch
import torch
2022-05-11 02:11:40 +02:00
import traceback # Error Message Recent Calls
2022-07-23 09:56:57 +02:00
import warnings
2022-05-11 02:11:40 +02:00
class Predictor():
def __init__(self):
pass
2022-07-23 09:56:57 +02:00
def mdx_options(self):
"""
Open Advanced MDX Options
"""
self.okVar = tk.IntVar()
self.n_fft_scale_set_var = tk.StringVar(value='6144')
self.dim_f_set_var = tk.StringVar(value='2048')
self.mdxnetModeltype_var = tk.StringVar(value='Vocals')
self.noise_pro_select_set_var = tk.StringVar(value='MDX-NET_Noise_Profile_14_kHz')
self.compensate_v_var = tk.StringVar(value=1.03597672895)
top= Toplevel()
top.geometry("740x550")
window_height = 740
window_width = 550
top.title("Specify Parameters")
top.resizable(False, False) # This code helps to disable windows from resizing
screen_width = top.winfo_screenwidth()
screen_height = top.winfo_screenheight()
x_cordinate = int((screen_width/2) - (window_width/2))
y_cordinate = int((screen_height/2) - (window_height/2))
top.geometry("{}x{}+{}+{}".format(window_width, window_height, x_cordinate, y_cordinate))
# change title bar icon
top.iconbitmap('img\\UVR-Icon-v2.ico')
tabControl = ttk.Notebook(top)
tabControl.pack(expand = 1, fill ="both")
tabControl.grid_rowconfigure(0, weight=1)
tabControl.grid_columnconfigure(0, weight=1)
frame0=Frame(tabControl,highlightbackground='red',highlightthicknes=0)
frame0.grid(row=0,column=0,padx=0,pady=0)
frame0.tkraise(frame0)
space_small = ' '*20
space_small_1 = ' '*10
l0=tk.Label(frame0, text=f'{space_small}Stem Type{space_small}', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=3,column=0,padx=0,pady=5)
l0=ttk.OptionMenu(frame0, self.mdxnetModeltype_var, None, 'Vocals', 'Instrumental')
l0.grid(row=4,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='N_FFT Scale', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=5,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text=f'{space_small_1}(Manual Set){space_small_1}', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=5,column=1,padx=0,pady=5)
self.options_n_fft_scale_Opt = l0=ttk.OptionMenu(frame0, self.n_fft_scale_set_var, None, '4096', '6144', '7680', '8192', '16384')
self.options_n_fft_scale_Opt
l0.grid(row=6,column=0,padx=0,pady=5)
self.options_n_fft_scale_Entry = l0=ttk.Entry(frame0, textvariable=self.n_fft_scale_set_var, justify='center')
self.options_n_fft_scale_Entry
l0.grid(row=6,column=1,padx=0,pady=5)
l0=tk.Label(frame0, text='Dim_f', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=7,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='(Manual Set)', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=7,column=1,padx=0,pady=5)
self.options_dim_f_Opt = l0=ttk.OptionMenu(frame0, self.dim_f_set_var, None, '2048', '3072', '4096')
self.options_dim_f_Opt
l0.grid(row=8,column=0,padx=0,pady=5)
self.options_dim_f_Entry = l0=ttk.Entry(frame0, textvariable=self.dim_f_set_var, justify='center')
self.options_dim_f_Entry
l0.grid(row=8,column=1,padx=0,pady=5)
l0=tk.Label(frame0, text='Noise Profile', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=9,column=0,padx=0,pady=5)
l0=ttk.OptionMenu(frame0, self.noise_pro_select_set_var, None, 'MDX-NET_Noise_Profile_14_kHz', 'MDX-NET_Noise_Profile_17_kHz', 'MDX-NET_Noise_Profile_Full_Band')
l0.grid(row=10,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='Volume Compensation', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=11,column=0,padx=0,pady=10)
self.options_compensate = l0=ttk.Entry(frame0, textvariable=self.compensate_v_var, justify='center')
self.options_compensate
l0.grid(row=12,column=0,padx=0,pady=0)
l0=ttk.Button(frame0,text="Continue & Set These Parameters", command=lambda: self.okVar.set(1))
l0.grid(row=13,column=0,padx=0,pady=30)
def stop():
widget_text.write(f'Please configure the ONNX model settings accordingly and try again.\n\n')
widget_text.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
gui_progress_bar.set(0)
widget_button.configure(state=tk.NORMAL) # Enable Button
top.destroy()
return
l0=ttk.Button(frame0,text="Stop Process", command=stop)
l0.grid(row=13,column=1,padx=0,pady=30)
#print('print from top ', model_hash)
#source_val = 0
def change_event():
self.okVar.set(1)
#top.destroy()
pass
top.protocol("WM_DELETE_WINDOW", change_event)
frame0.wait_variable(self.okVar)
global n_fft_scale_set
global dim_f_set
global modeltype
global stemset_n
global source_val
global noise_pro_set
global compensate
global demucs_model_set
stemtype = self.mdxnetModeltype_var.get()
if stemtype == 'Vocals':
modeltype = 'v'
stemset_n = '(Vocals)'
source_val = 3
if stemtype == 'Instrumental':
modeltype = 'v'
stemset_n = '(Instrumental)'
source_val = 2
if stemtype == 'Other':
modeltype = 'o'
stemset_n = '(Other)'
source_val = 2
if stemtype == 'Drums':
modeltype = 'd'
stemset_n = '(Drums)'
source_val = 1
if stemtype == 'Bass':
modeltype = 'b'
stemset_n = '(Bass)'
source_val = 0
compensate = self.compensate_v_var.get()
n_fft_scale_set = int(self.n_fft_scale_set_var.get())
dim_f_set = int(self.dim_f_set_var.get())
noise_pro_set = self.noise_pro_select_set_var.get()
mdx_model_params = {
'modeltype' : modeltype,
'stemset_n' : stemset_n,
'source_val' : source_val,
'compensate' : compensate,
'n_fft_scale_set' : n_fft_scale_set,
'dim_f_set' : dim_f_set,
'noise_pro' : noise_pro_set,
}
mdx_model_params_r = json.dumps(mdx_model_params, indent=4)
with open(f"lib_v5/filelists/model_cache/mdx_model_cache/{model_hash}.json", "w") as outfile:
outfile.write(mdx_model_params_r)
if stemset_n == '(Instrumental)':
if not 'UVR' in demucs_model_set:
widget_text.write(base_text + 'The selected Demucs model cannot be used with this model.\n')
widget_text.write(base_text + 'Only 2 stem Demucs models are compatible with this model.\n')
widget_text.write(base_text + 'Setting Demucs model to \"UVR_Demucs_Model_1\".\n\n')
demucs_model_set = 'UVR_Demucs_Model_1'
top.destroy()
2022-06-13 09:07:19 +02:00
def prediction_setup(self):
2022-05-23 04:47:47 +02:00
global device
if data['gpu'] >= 0:
2022-06-13 09:07:19 +02:00
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
2022-05-23 04:47:47 +02:00
if data['gpu'] == -1:
device = torch.device('cpu')
2022-06-13 09:07:19 +02:00
if demucs_switch == 'on':
2022-07-23 09:56:57 +02:00
#print('check model here: ', demucs_model_set)
#'demucs.th.gz', 'demucs_extra.th.gz', 'light.th.gz', 'light_extra.th.gz'
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
load_from = "models/Demucs_Models/"f"{demucs_model_set}"
if str(load_from).endswith(".gz"):
load_from = gzip.open(load_from, "rb")
klass, args, kwargs, state = torch.load(load_from)
self.demucs = klass(*args, **kwargs)
widget_text.write(base_text + 'Loading Demucs v1 model... ')
update_progress(**progress_kwargs,
step=0.05)
self.demucs.to(device)
self.demucs.load_state_dict(state)
widget_text.write('Done!\n')
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
if '48' in demucs_model_set:
channels=48
elif 'unittest' in demucs_model_set:
channels=4
else:
channels=64
if 'tasnet' in demucs_model_set:
self.demucs = ConvTasNet(sources=["drums", "bass", "other", "vocals"], X=10)
else:
self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels)
widget_text.write(base_text + 'Loading Demucs v2 model... ')
update_progress(**progress_kwargs,
step=0.05)
self.demucs.to(device)
self.demucs.load_state_dict(torch.load("models/Demucs_Models/"f"{demucs_model_set}"))
widget_text.write('Done!\n')
self.demucs.eval()
else:
if 'UVR' in demucs_model_set:
self.demucs = HDemucs(sources=["other", "vocals"])
else:
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
widget_text.write(base_text + 'Loading Demucs model... ')
update_progress(**progress_kwargs,
step=0.05)
path_d = Path('models/Demucs_Models/v3_repo')
#print('What Demucs model was chosen? ', demucs_model_set)
self.demucs = _gm(name=demucs_model_set, repo=path_d)
self.demucs.to(device)
self.demucs.eval()
widget_text.write('Done!\n')
if isinstance(self.demucs, BagOfModels):
widget_text.write(base_text + f"Selected Demucs model is a bag of {len(self.demucs.models)} model(s).\n")
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
self.onnx_models = {}
c = 0
2022-07-23 09:56:57 +02:00
if demucs_only == 'on':
pass
else:
self.models = get_models('tdf_extra', load=False, device=cpu, stems=modeltype, n_fft_scale=n_fft_scale_set, dim_f=dim_f_set)
widget_text.write(base_text + 'Loading ONNX model... ')
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
update_progress(**progress_kwargs,
step=0.1)
c+=1
if data['gpu'] >= 0:
if torch.cuda.is_available():
run_type = ['CUDAExecutionProvider']
else:
data['gpu'] = -1
widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ")
run_type = ['CPUExecutionProvider']
2022-05-23 04:47:47 +02:00
elif data['gpu'] == -1:
2022-05-11 02:11:40 +02:00
run_type = ['CPUExecutionProvider']
2022-06-03 11:08:37 +02:00
2022-06-13 09:07:19 +02:00
if demucs_only == 'off':
self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', model_set), providers=run_type)
2022-07-23 09:56:57 +02:00
#print(demucs_model_set)
2022-06-03 11:08:37 +02:00
widget_text.write('Done!\n')
2022-06-13 09:07:19 +02:00
elif demucs_only == 'on':
2022-07-23 09:56:57 +02:00
#print(demucs_model_set)
2022-06-13 09:07:19 +02:00
pass
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
def prediction(self, m):
2022-06-13 09:07:19 +02:00
mix, samplerate = librosa.load(m, mono=False, sr=44100)
2022-05-11 02:11:40 +02:00
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
2022-06-13 09:07:19 +02:00
samplerate = samplerate
2022-05-11 02:11:40 +02:00
mix = mix.T
sources = self.demix(mix.T)
widget_text.write(base_text + 'Inferences complete!\n')
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
c = -1
2022-08-01 01:49:21 +02:00
inst_only = data['inst_only']
voc_only = data['voc_only']
if stemset_n == '(Instrumental)':
if data['inst_only'] == True:
voc_only = True
inst_only = False
if data['voc_only'] == True:
inst_only = True
voc_only = False
2022-05-11 02:11:40 +02:00
#Main Save Path
save_path = os.path.dirname(base_name)
2022-07-26 07:27:05 +02:00
#Write name
if stemset_n == '(Vocals)':
stem_text_a = 'Vocals'
stem_text_b = 'Instrumental'
elif stemset_n == '(Instrumental)':
stem_text_a = 'Instrumental'
stem_text_b = 'Vocals'
2022-05-11 02:11:40 +02:00
#Vocal Path
2022-07-23 09:56:57 +02:00
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Instrumental)':
vocal_name = '(Instrumental)'
2022-05-11 02:11:40 +02:00
if data['modelFolder']:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
else:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
#Instrumental Path
2022-07-23 09:56:57 +02:00
if stemset_n == '(Vocals)':
Instrumental_name = '(Instrumental)'
elif stemset_n == '(Instrumental)':
Instrumental_name = '(Vocals)'
2022-05-11 02:11:40 +02:00
if data['modelFolder']:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
else:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
#Non-Reduced Vocal Path
2022-07-23 09:56:57 +02:00
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Instrumental)':
vocal_name = '(Instrumental)'
2022-05-11 02:11:40 +02:00
if data['modelFolder']:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
else:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
if os.path.isfile(non_reduced_vocal_path):
file_exists_n = 'there'
else:
file_exists_n = 'not_there'
if os.path.isfile(vocal_path):
file_exists = 'there'
else:
file_exists = 'not_there'
2022-06-13 09:07:19 +02:00
if demucs_only == 'on':
data['noisereduc_s'] == 'None'
2022-05-11 02:11:40 +02:00
if not data['noisereduc_s'] == 'None':
c += 1
2022-06-13 09:07:19 +02:00
if demucs_switch == 'off':
2022-08-01 01:49:21 +02:00
if inst_only and not voc_only:
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Preparing to save {stem_text_b}...')
2022-05-11 02:11:40 +02:00
else:
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Saving {stem_text_a}... ')
2022-07-06 09:57:56 +02:00
sf.write(non_reduced_vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(int(data['noisereduc_s'])/10)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
2022-06-06 22:44:20 +02:00
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
2022-05-11 02:11:40 +02:00
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
widget_text.write('Done!\n')
update_progress(**progress_kwargs,
step=(0.95))
else:
2022-08-01 01:49:21 +02:00
if inst_only and not voc_only:
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Preparing to save {stem_text_b}...')
2022-05-11 02:11:40 +02:00
else:
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Saving {stem_text_a}... ')
2022-06-13 09:07:19 +02:00
if demucs_only == 'on':
if 'UVR' in model_set_name:
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
2022-06-13 09:07:19 +02:00
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
if 'extra' in model_set_name:
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
2022-06-13 09:07:19 +02:00
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
2022-07-06 09:57:56 +02:00
sf.write(non_reduced_vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
2022-06-13 09:07:19 +02:00
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(data['noisereduc_s'])/10
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
2022-05-11 02:11:40 +02:00
else:
c += 1
2022-06-13 09:07:19 +02:00
if demucs_switch == 'off':
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Saving {stem_text_a}... ')
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
else:
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Saving {stem_text_a}... ')
2022-06-13 09:07:19 +02:00
if demucs_only == 'on':
if 'UVR' in model_set_name:
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
2022-06-13 09:07:19 +02:00
if 'extra' in model_set_name:
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
2022-06-13 09:07:19 +02:00
else:
2022-07-06 09:57:56 +02:00
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
2022-08-01 01:49:21 +02:00
if voc_only and not inst_only:
2022-05-11 02:11:40 +02:00
pass
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
2022-07-26 07:27:05 +02:00
widget_text.write(base_text + f'Saving {stem_text_b}... ')
2022-05-11 02:11:40 +02:00
for i, e in tqdm(enumerate(finalfiles)):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
2022-05-23 04:47:47 +02:00
step=(0.95))
2022-07-06 09:57:56 +02:00
sf.write(Instrumental_path, normalization_set(spec_utils.cmb_spectrogram_to_wave(-v_spec, mp)), mp.param['sr'], subtype=wav_type_set)
2022-08-01 01:49:21 +02:00
if inst_only:
2022-05-11 02:11:40 +02:00
if file_exists == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write('Done!\n')
if data['noisereduc_s'] == 'None':
pass
2022-08-01 01:49:21 +02:00
elif inst_only:
2022-05-11 02:11:40 +02:00
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
2022-07-23 09:56:57 +02:00
widget_text.write(base_text + 'Completed Separation!\n\n')
2022-05-11 02:11:40 +02:00
def demix(self, mix):
# 1 = demucs only
# 0 = onnx only
if data['chunks'] == 'Full':
chunk_set = 0
else:
chunk_set = data['chunks']
if data['chunks'] == 'Auto':
if data['gpu'] == 0:
try:
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
except:
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
2022-05-31 21:17:32 +02:00
if int(gpu_mem) <= int(6):
2022-05-11 02:11:40 +02:00
chunk_set = int(5)
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
2022-05-31 21:17:32 +02:00
if gpu_mem in [7, 8, 9, 10, 11, 12, 13, 14, 15]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if int(gpu_mem) >= int(16):
2022-05-11 02:11:40 +02:00
chunk_set = int(40)
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
if data['gpu'] == -1:
sys_mem = psutil.virtual_memory().total >> 30
if int(sys_mem) <= int(4):
chunk_set = int(1)
widget_text.write(base_text + 'Chunk size auto-set to 1... \n')
if sys_mem in [5, 6, 7, 8]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]:
chunk_set = int(25)
widget_text.write(base_text + 'Chunk size auto-set to 25... \n')
if int(sys_mem) >= int(17):
chunk_set = int(60)
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
elif data['chunks'] == 'Full':
chunk_set = 0
widget_text.write(base_text + "Chunk size set to full... \n")
else:
chunk_set = int(data['chunks'])
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]])
segmented_mix = {}
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
2022-06-13 09:07:19 +02:00
if demucs_switch == 'off':
2022-05-11 02:11:40 +02:00
sources = self.demix_base(segmented_mix, margin_size=margin)
2022-06-13 09:07:19 +02:00
elif demucs_only == 'on':
2022-07-23 09:56:57 +02:00
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
sources = self.demix_demucs_v1(segmented_mix, margin_size=margin)
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
sources = self.demix_demucs_v2(segmented_mix, margin_size=margin)
else:
if split_mode == True:
sources = self.demix_demucs_split(mix)
if split_mode == False:
sources = self.demix_demucs(segmented_mix, margin_size=margin)
2022-05-11 02:11:40 +02:00
else: # both, apply spec effects
base_out = self.demix_base(segmented_mix, margin_size=margin)
2022-07-23 09:56:57 +02:00
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
demucs_out = self.demix_demucs_v1(segmented_mix, margin_size=margin)
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
demucs_out = self.demix_demucs_v2(segmented_mix, margin_size=margin)
else:
if split_mode == True:
demucs_out = self.demix_demucs_split(mix)
if split_mode == False:
demucs_out = self.demix_demucs(segmented_mix, margin_size=margin)
2022-05-11 02:11:40 +02:00
nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out))
if nan_count > 0:
print('Warning: there are {} nan values in the array(s).'.format(nan_count))
demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out)
sources = {}
2022-06-13 09:07:19 +02:00
if 'UVR' in demucs_model_set:
2022-07-23 09:56:57 +02:00
if stemset_n == '(Instrumental)':
sources[3] = (spec_effects(wave=[demucs_out[0],base_out[0]],
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
else:
sources[3] = (spec_effects(wave=[demucs_out[1],base_out[0]],
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
2022-06-13 09:07:19 +02:00
else:
sources[3] = (spec_effects(wave=[demucs_out[3],base_out[0]],
algorithm=data['mixing'],
2022-07-04 03:18:27 +02:00
value=b[3])*float(compensate)) # compensation
2022-06-13 09:07:19 +02:00
2022-07-06 09:57:56 +02:00
if demucs_switch == 'off':
return sources*float(compensate)
else:
return sources
2022-05-11 02:11:40 +02:00
def demix_base(self, mixes, margin_size):
chunked_sources = []
onnxitera = len(mixes)
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text.write(base_text + "Running ONNX Inference...\n")
widget_text.write(base_text + "Processing "f"{onnxitera} slices... ")
print(' Running ONNX Inference...')
for mix in mixes:
gui_progress_bar_onnx += 1
2022-06-13 09:07:19 +02:00
if demucs_switch == 'on':
2022-05-11 02:11:40 +02:00
update_progress(**progress_kwargs,
step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx)))
else:
update_progress(**progress_kwargs,
step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx)))
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
mod = 0
for model in self.models:
mod += 1
trim = model.n_fft//2
gen_size = model.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_models[mod]
spek = model.stft(mix_waves)
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:,start:end])
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
del self.onnx_models
widget_text.write('Done!\n')
return _sources
def demix_demucs(self, mix, margin_size):
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-05-11 02:11:40 +02:00
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
2022-06-13 09:07:19 +02:00
widget_text.write(base_text + "Split Mode is off. (Chunks enabled for Demucs Model)\n")
2022-05-11 02:11:40 +02:00
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
2022-06-13 09:07:19 +02:00
print('Running Demucs Inference...')
2022-05-11 02:11:40 +02:00
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
2022-06-13 09:07:19 +02:00
sources = apply_model(self.demucs, cmix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
2022-05-11 02:11:40 +02:00
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
2022-06-13 09:07:19 +02:00
def demix_demucs_split(self, mix):
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-06-13 09:07:19 +02:00
widget_text.write(base_text + "Split Mode is on. (Chunks disabled for Demucs Model)\n")
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
mix = torch.tensor(mix, dtype=torch.float32)
ref = mix.mean(0)
mix = (mix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(self.demucs, mix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
widget_text.write('Done!\n')
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
return sources
2022-07-23 09:56:57 +02:00
def demix_demucs_v2(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs v2 Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model_v2(self.demucs, cmix.to(device), split=split_mode, overlap=overlap_set, shifts=shift_set)
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
def demix_demucs_v1(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs v1 Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model_v1(self.demucs, cmix.to(device), split=split_mode, shifts=shift_set)
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
2022-05-11 02:11:40 +02:00
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def hide_opt():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
self.models = defaultdict(lambda: None)
self.devices = defaultdict(lambda: None)
# self.offset = model.offset
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
def determineModelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if not data['modelFolder']:
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
if modelFolderName:
modelFolderName = '/' + modelFolderName
return modelFolderName
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
# self.offset = model.offset
data = {
2022-07-23 09:56:57 +02:00
'agg': 10,
'algo': 'Instrumentals (Min Spec)',
'appendensem': False,
'autocompensate': True,
'chunks': 'auto',
'compensate': 1.03597672895,
'demucs_only': False,
'demucsmodel': False,
'DemucsModel_MDX': 'UVR_Demucs_Model_1',
'ensChoose': 'Basic VR Ensemble',
2022-05-11 02:11:40 +02:00
'export_path': None,
2022-07-23 09:56:57 +02:00
'gpu': -1,
'high_end_process': 'mirroring',
'input_paths': None,
'inst_only': False,
'instrumentalModel': None,
'margin': 44100,
'mdx_ensem': 'MDX-Net: UVR-MDX-NET 1',
'mdx_ensem_b': 'No Model',
'mdx_only_ensem_a': 'MDX-Net: UVR-MDX-NET Main',
'mdx_only_ensem_b': 'MDX-Net: UVR-MDX-NET 1',
'mdx_only_ensem_c': 'No Model',
'mdx_only_ensem_d': 'No Model',
'mdx_only_ensem_e': 'No Model',
'mixing': 'Default',
'mp3bit': '320k',
'noise_pro_select': 'Auto Select',
'noisereduc_s': 3,
'non_red': False,
'normalize': False,
'output_image': True,
'overlap': 0.5,
'postprocess': True,
2022-05-11 02:11:40 +02:00
'saveFormat': 'wav',
2022-07-23 09:56:57 +02:00
'shifts': 0,
'split_mode': False,
'tta': True,
'useModel': None,
'voc_only': False,
2022-05-23 04:47:47 +02:00
'vr_ensem': '2_HP-UVR',
'vr_ensem_a': '1_HP-UVR',
'vr_ensem_b': '2_HP-UVR',
'vr_ensem_c': 'No Model',
'vr_ensem_d': 'No Model',
'vr_ensem_e': 'No Model',
'vr_ensem_mdx_a': 'No Model',
'vr_ensem_mdx_b': 'No Model',
'vr_ensem_mdx_c': 'No Model',
2022-07-23 09:56:57 +02:00
'vr_multi_USER_model_param_1': 'Auto',
'vr_multi_USER_model_param_2': 'Auto',
'vr_multi_USER_model_param_3': 'Auto',
'vr_multi_USER_model_param_4': 'Auto',
'vr_basic_USER_model_param_1': 'Auto',
'vr_basic_USER_model_param_2': 'Auto',
'vr_basic_USER_model_param_3': 'Auto',
'vr_basic_USER_model_param_4': 'Auto',
'vr_basic_USER_model_param_5': 'Auto',
2022-07-06 09:57:56 +02:00
'wavtype': 'PCM_16',
2022-07-23 09:56:57 +02:00
'window_size': 512
2022-05-11 02:11:40 +02:00
}
default_window_size = data['window_size']
default_agg = data['agg']
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global default_noisereduc_s
global base_name
global progress_kwargs
global base_text
2022-06-02 02:00:43 +02:00
global modeltype
2022-05-11 02:11:40 +02:00
global model_set
global model_set_name
global ModelName_2
2022-07-04 03:18:27 +02:00
global compensate
global autocompensate
2022-06-13 09:07:19 +02:00
global demucs_model_set
2022-06-03 11:08:37 +02:00
global channel_set
global margin_set
global overlap_set
global shift_set
2022-06-06 22:44:20 +02:00
global noise_pro_set
2022-06-03 11:08:37 +02:00
global n_fft_scale_set
global dim_f_set
2022-06-13 09:07:19 +02:00
global split_mode
global demucs_switch
global demucs_only
2022-07-06 09:57:56 +02:00
global wav_type_set
global flac_type_set
global mp3_bit_set
2022-07-23 09:56:57 +02:00
global model_hash
global stime
global stemset_n
global source_val
global widget_button
2022-07-06 09:57:56 +02:00
wav_type_set = data['wavtype']
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
# Update default settings
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
2022-07-04 03:18:27 +02:00
autocompensate = data['autocompensate']
2022-05-11 02:11:40 +02:00
widget_text = text_widget
gui_progress_bar = progress_var
2022-07-23 09:56:57 +02:00
widget_button = button_widget
2022-05-11 23:05:05 +02:00
#Error Handling
2022-05-11 02:11:40 +02:00
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
2022-05-11 23:05:05 +02:00
onnxmemerror = "onnxruntime::CudaCall CUDA failure 2: out of memory"
2022-05-23 04:47:47 +02:00
onnxmemerror2 = "onnxruntime::BFCArena::AllocateRawInternal"
systemmemerr = "DefaultCPUAllocator: not enough memory"
2022-05-11 02:11:40 +02:00
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
cuda_err = "CUDA out of memory"
2022-05-23 04:47:47 +02:00
enex_err = "local variable \'enseExport\' referenced before assignment"
2022-05-11 02:11:40 +02:00
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
2022-08-01 01:49:21 +02:00
demucs_model_missing_err = "is neither a single pre-trained model or a bag of models."
2022-05-11 02:11:40 +02:00
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: Ensemble Mode' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
global nn_arch_sizes
global nn_architecture
nn_arch_sizes = [
31191, # default
2022-07-23 09:56:57 +02:00
33966, 123821, 123812, 129605, 537238, 537227 # custom
2022-05-11 02:11:40 +02:00
]
def save_files(wav_instrument, wav_vocals):
"""Save output music files"""
vocal_name = '(Vocals)'
instrumental_name = '(Instrumental)'
save_path = os.path.dirname(base_name)
# Swap names if vocal model
VModel="Vocal"
if VModel in model_name:
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
sf.write(f'temp.wav',
2022-07-06 09:57:56 +02:00
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
# -Save files-
# Instrumental
if instrumental_name is not None:
instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_1}_{instrumental_name}',
)
if VModel in ModelName_1 and data['voc_only']:
sf.write(instrumental_path,
2022-07-06 09:57:56 +02:00
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
elif VModel in ModelName_1 and data['inst_only']:
pass
elif data['voc_only']:
pass
else:
sf.write(instrumental_path,
2022-07-06 09:57:56 +02:00
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
# Vocal
if vocal_name is not None:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{ModelName_1}_{vocal_name}',
)
if VModel in ModelName_1 and data['inst_only']:
sf.write(vocal_path,
2022-07-06 09:57:56 +02:00
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
elif VModel in ModelName_1 and data['voc_only']:
pass
elif data['inst_only']:
pass
else:
sf.write(vocal_path,
2022-07-06 09:57:56 +02:00
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
data.update(kwargs)
2022-07-23 09:56:57 +02:00
if data['DemucsModel_MDX'] == "Tasnet v1":
demucs_model_set_name = 'tasnet.th'
elif data['DemucsModel_MDX'] == "Tasnet_extra v1":
demucs_model_set_name = 'tasnet_extra.th'
elif data['DemucsModel_MDX'] == "Demucs v1":
demucs_model_set_name = 'demucs.th'
elif data['DemucsModel_MDX'] == "Demucs v1.gz":
demucs_model_set_name = 'demucs.th.gz'
elif data['DemucsModel_MDX'] == "Demucs_extra v1":
demucs_model_set_name = 'demucs_extra.th'
elif data['DemucsModel_MDX'] == "Demucs_extra v1.gz":
demucs_model_set_name = 'demucs_extra.th.gz'
elif data['DemucsModel_MDX'] == "Light v1":
demucs_model_set_name = 'light.th'
elif data['DemucsModel_MDX'] == "Light v1.gz":
demucs_model_set_name = 'light.th.gz'
elif data['DemucsModel_MDX'] == "Light_extra v1":
demucs_model_set_name = 'light_extra.th'
elif data['DemucsModel_MDX'] == "Light_extra v1.gz":
demucs_model_set_name = 'light_extra.th.gz'
elif data['DemucsModel_MDX'] == "Tasnet v2":
demucs_model_set_name = 'tasnet-beb46fac.th'
elif data['DemucsModel_MDX'] == "Tasnet_extra v2":
demucs_model_set_name = 'tasnet_extra-df3777b2.th'
elif data['DemucsModel_MDX'] == "Demucs48_hq v2":
demucs_model_set_name = 'demucs48_hq-28a1282c.th'
elif data['DemucsModel_MDX'] == "Demucs v2":
demucs_model_set_name = 'demucs-e07c671f.th'
elif data['DemucsModel_MDX'] == "Demucs_extra v2":
demucs_model_set_name = 'demucs_extra-3646af93.th'
elif data['DemucsModel_MDX'] == "Demucs_unittest v2":
demucs_model_set_name = 'demucs_unittest-09ebc15f.th'
elif '.ckpt' in data['DemucsModel_MDX'] and 'v2' in data['DemucsModel_MDX']:
demucs_model_set_name = data['DemucsModel_MDX']
elif '.ckpt' in data['DemucsModel_MDX'] and 'v1' in data['DemucsModel_MDX']:
demucs_model_set_name = data['DemucsModel_MDX']
else:
demucs_model_set_name = data['DemucsModel_MDX']
if data['mdx_ensem'] == "Demucs: Tasnet v1":
demucs_model_set_name_muilti_a = 'tasnet.th'
elif data['mdx_ensem'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_muilti_a = 'tasnet_extra.th'
elif data['mdx_ensem'] == "Demucs: Demucs v1":
demucs_model_set_name_muilti_a = 'demucs.th'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_muilti_a = 'demucs_extra.th'
elif data['mdx_ensem'] == "Demucs: Light v1":
demucs_model_set_name_muilti_a = 'light.th'
elif data['mdx_ensem'] == "Demucs: Light_extra v1":
demucs_model_set_name_muilti_a = 'light_extra.th'
elif data['mdx_ensem'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_muilti_a = 'demucs.th.gz'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_muilti_a = 'demucs_extra.th.gz'
elif data['mdx_ensem'] == "Demucs: Light v1.gz":
demucs_model_set_name_muilti_a = 'light.th.gz'
elif data['mdx_ensem'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_muilti_a = 'light_extra.th.gz'
elif data['mdx_ensem'] == "Demucs: Tasnet v2":
demucs_model_set_name_muilti_a = 'tasnet-beb46fac.th'
elif data['mdx_ensem'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_muilti_a = 'tasnet_extra-df3777b2.th'
elif data['mdx_ensem'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_muilti_a = 'demucs48_hq-28a1282c.th'
elif data['mdx_ensem'] == "Demucs: Demucs v2":
demucs_model_set_name_muilti_a = 'demucs-e07c671f.th'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_muilti_a = 'demucs_extra-3646af93.th'
elif data['mdx_ensem'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_muilti_a = 'demucs_unittest-09ebc15f.th'
elif data['mdx_ensem'] == "Demucs: mdx_extra":
demucs_model_set_name_muilti_a = 'mdx_extra'
elif data['mdx_ensem'] == "Demucs: mdx_extra_q":
demucs_model_set_name_muilti_a = 'mdx_extra_q'
elif data['mdx_ensem'] == "Demucs: mdx":
demucs_model_set_name_muilti_a = 'mdx'
elif data['mdx_ensem'] == "Demucs: mdx_q":
demucs_model_set_name_muilti_a = 'mdx_q'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_1'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_2'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_muilti_a = data['mdx_ensem']
if data['mdx_ensem_b'] == "Demucs: Tasnet v1":
demucs_model_set_name_muilti_b = 'tasnet.th'
elif data['mdx_ensem_b'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_muilti_b = 'tasnet_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v1":
demucs_model_set_name_muilti_b = 'demucs.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_muilti_b = 'demucs_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Light v1":
demucs_model_set_name_muilti_b = 'light.th'
elif data['mdx_ensem_b'] == "Demucs: Light_extra v1":
demucs_model_set_name_muilti_b = 'light_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_muilti_b = 'demucs.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_muilti_b = 'demucs_extra.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Light v1.gz":
demucs_model_set_name_muilti_b = 'light.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_muilti_b = 'light_extra.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Tasnet v2":
demucs_model_set_name_muilti_b = 'tasnet-beb46fac.th'
elif data['mdx_ensem_b'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_muilti_b = 'tasnet_extra-df3777b2.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_muilti_b = 'demucs48_hq-28a1282c.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v2":
demucs_model_set_name_muilti_b = 'demucs-e07c671f.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_muilti_b = 'demucs_extra-3646af93.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_muilti_b = 'demucs_unittest-09ebc15f.th'
elif data['mdx_ensem_b'] == "Demucs: mdx_extra":
demucs_model_set_name_muilti_b = 'mdx_extra'
elif data['mdx_ensem_b'] == "Demucs: mdx_extra_q":
demucs_model_set_name_muilti_b = 'mdx_extra_q'
elif data['mdx_ensem_b'] == "Demucs: mdx":
demucs_model_set_name_muilti_b = 'mdx'
elif data['mdx_ensem_b'] == "Demucs: mdx_q":
demucs_model_set_name_muilti_b = 'mdx_q'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_1'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_2'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_muilti_b = data['mdx_ensem_b']
if data['mdx_only_ensem_a'] == "Demucs: Tasnet v1":
demucs_model_set_name_a = 'tasnet.th'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_a = 'tasnet_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v1":
demucs_model_set_name_a = 'demucs.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_a = 'demucs_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Light v1":
demucs_model_set_name_a = 'light.th'
elif data['mdx_only_ensem_a'] == "Demucs: Light_extra v1":
demucs_model_set_name_a = 'light_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_a = 'demucs.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_a = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Light v1.gz":
demucs_model_set_name_a = 'light.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_a = 'light_extra.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet v2":
demucs_model_set_name_a = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_a = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_a = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v2":
demucs_model_set_name_a = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_a = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_a = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_extra":
demucs_model_set_name_a = 'mdx_extra'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_extra_q":
demucs_model_set_name_a = 'mdx_extra_q'
elif data['mdx_only_ensem_a'] == "Demucs: mdx":
demucs_model_set_name_a = 'mdx'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_q":
demucs_model_set_name_a = 'mdx_q'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_a = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_a = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_a = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_a = data['mdx_only_ensem_a']
if data['mdx_only_ensem_b'] == "Demucs: Tasnet v1":
demucs_model_set_name_b = 'tasnet.th'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_b = 'tasnet_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v1":
demucs_model_set_name_b = 'demucs.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_b = 'demucs_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Light v1":
demucs_model_set_name_b = 'light.th'
elif data['mdx_only_ensem_b'] == "Demucs: Light_extra v1":
demucs_model_set_name_b = 'light_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_b = 'demucs.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_b = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Light v1.gz":
demucs_model_set_name_b = 'light.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_b = 'light_extra.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet v2":
demucs_model_set_name_b = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_b = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_b = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v2":
demucs_model_set_name_b = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_b = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_b = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_extra":
demucs_model_set_name_b = 'mdx_extra'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_extra_q":
demucs_model_set_name_b = 'mdx_extra_q'
elif data['mdx_only_ensem_b'] == "Demucs: mdx":
demucs_model_set_name_b = 'mdx'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_q":
demucs_model_set_name_b = 'mdx_q'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_b = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_b = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_b = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_b = data['mdx_only_ensem_b']
if data['mdx_only_ensem_c'] == "Demucs: Tasnet v1":
demucs_model_set_name_c = 'tasnet.th'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_c = 'tasnet_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v1":
demucs_model_set_name_c = 'demucs.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_c = 'demucs_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Light v1":
demucs_model_set_name_c = 'light.th'
elif data['mdx_only_ensem_c'] == "Demucs: Light_extra v1":
demucs_model_set_name_c = 'light_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_c = 'demucs.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_c = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Light v1.gz":
demucs_model_set_name_c = 'light.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_c = 'light_extra.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet v2":
demucs_model_set_name_c = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_c = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_c = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v2":
demucs_model_set_name_c = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_c = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_c = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_extra":
demucs_model_set_name_c = 'mdx_extra'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_extra_q":
demucs_model_set_name_c = 'mdx_extra_q'
elif data['mdx_only_ensem_c'] == "Demucs: mdx":
demucs_model_set_name_c = 'mdx'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_q":
demucs_model_set_name_c = 'mdx_q'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_c = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_c = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_c = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_c = data['mdx_only_ensem_c']
if data['mdx_only_ensem_d'] == "Demucs: Tasnet v1":
demucs_model_set_name_d = 'tasnet.th'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_d = 'tasnet_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v1":
demucs_model_set_name_d = 'demucs.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_d = 'demucs_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Light v1":
demucs_model_set_name_d = 'light.th'
elif data['mdx_only_ensem_d'] == "Demucs: Light_extra v1":
demucs_model_set_name_d = 'light_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_d = 'demucs.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_d = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Light v1.gz":
demucs_model_set_name_d = 'light.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_d = 'light_extra.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet v2":
demucs_model_set_name_d = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_d = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_d = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v2":
demucs_model_set_name_d = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_d = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_d = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_extra":
demucs_model_set_name_d = 'mdx_extra'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_extra_q":
demucs_model_set_name_d = 'mdx_extra_q'
elif data['mdx_only_ensem_d'] == "Demucs: mdx":
demucs_model_set_name_d = 'mdx'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_q":
demucs_model_set_name_d = 'mdx_q'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_d = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_d = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_d = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_d = data['mdx_only_ensem_d']
if data['mdx_only_ensem_e'] == "Demucs: Tasnet v1":
demucs_model_set_name_e = 'tasnet.th'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_e = 'tasnet_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v1":
demucs_model_set_name_e = 'demucs.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_e = 'demucs_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Light v1":
demucs_model_set_name_e = 'light.th'
elif data['mdx_only_ensem_e'] == "Demucs: Light_extra v1":
demucs_model_set_name_e = 'light_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_e = 'demucs.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_e = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Light v1.gz":
demucs_model_set_name_e = 'light.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_e = 'light_extra.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet v2":
demucs_model_set_name_e = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_e = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_e = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v2":
demucs_model_set_name_e = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_e = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_e = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_extra":
demucs_model_set_name_e = 'mdx_extra'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_extra_q":
demucs_model_set_name_e = 'mdx_extra_q'
elif data['mdx_only_ensem_e'] == "Demucs: mdx":
demucs_model_set_name_e = 'mdx'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_q":
demucs_model_set_name_e = 'mdx_q'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_e = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_e = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_e = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_e = data['mdx_only_ensem_e']
2022-05-11 02:11:40 +02:00
# Update default settings
global default_window_size
global default_agg
2022-07-06 09:57:56 +02:00
global normalization_set
2022-05-11 02:11:40 +02:00
default_window_size = data['window_size']
default_agg = data['agg']
2022-07-06 09:57:56 +02:00
if data['wavtype'] == '32-bit Float':
wav_type_set = 'FLOAT'
elif data['wavtype'] == '64-bit Float':
wav_type_set = 'DOUBLE'
else:
wav_type_set = data['wavtype']
flac_type_set = data['flactype']
mp3_bit_set = data['mp3bit']
if data['normalize'] == True:
normalization_set = spec_utils.normalize
print('normalization on')
else:
normalization_set = spec_utils.nonormalize
print('normalization off')
2022-05-11 02:11:40 +02:00
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
if os.path.exists('models/Main_Models/7_HP2-UVR.pth') \
or os.path.exists('models/Main_Models/8_HP2-UVR.pth') \
or os.path.exists('models/Main_Models/9_HP2-UVR.pth'):
hp2_ens = 'on'
else:
hp2_ens = 'off'
2022-05-23 04:47:47 +02:00
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
2022-07-23 09:56:57 +02:00
#print('Do all of the HP models exist? ' + hp2_ens)
2022-05-11 02:11:40 +02:00
# Separation Preperation
try: #Ensemble Dictionary
2022-06-13 09:07:19 +02:00
overlap_set = float(data['overlap'])
channel_set = int(data['channel'])
margin_set = int(data['margin'])
shift_set = int(data['shifts'])
2022-07-23 09:56:57 +02:00
demucs_model_set = demucs_model_set_name
2022-06-13 09:07:19 +02:00
split_mode = data['split_mode']
2022-07-06 09:57:56 +02:00
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Flac':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Mp3':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
2022-06-13 09:07:19 +02:00
if not data['ensChoose'] == 'Manual Ensemble':
2022-05-23 04:47:47 +02:00
2022-07-23 09:56:57 +02:00
##### Basic VR Ensemble #####
2022-05-23 04:47:47 +02:00
#1st Model
2022-07-23 09:56:57 +02:00
vr_ensem_a_name = data['vr_ensem_a']
vr_ensem_a = f'models/Main_Models/{vr_ensem_a_name}.pth'
vr_param_ens_a = data['vr_basic_USER_model_param_1']
2022-05-23 04:47:47 +02:00
#2nd Model
2022-07-23 09:56:57 +02:00
vr_ensem_b_name = data['vr_ensem_b']
vr_ensem_b = f'models/Main_Models/{vr_ensem_b_name}.pth'
vr_param_ens_b = data['vr_basic_USER_model_param_2']
2022-05-23 04:47:47 +02:00
#3rd Model
2022-07-23 09:56:57 +02:00
vr_ensem_c_name = data['vr_ensem_c']
vr_ensem_c = f'models/Main_Models/{vr_ensem_c_name}.pth'
vr_param_ens_c = data['vr_basic_USER_model_param_3']
2022-05-23 04:47:47 +02:00
#4th Model
2022-07-23 09:56:57 +02:00
vr_ensem_d_name = data['vr_ensem_d']
vr_ensem_d = f'models/Main_Models/{vr_ensem_d_name}.pth'
vr_param_ens_d = data['vr_basic_USER_model_param_4']
2022-05-23 04:47:47 +02:00
# 5th Model
2022-07-23 09:56:57 +02:00
vr_ensem_e_name = data['vr_ensem_e']
vr_ensem_e = f'models/Main_Models/{vr_ensem_e_name}.pth'
vr_param_ens_e = data['vr_basic_USER_model_param_5']
2022-05-23 04:47:47 +02:00
if data['vr_ensem_c'] == 'No Model' and data['vr_ensem_d'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/2'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/2'
}
]
elif data['vr_ensem_c'] == 'No Model' and data['vr_ensem_d'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_e,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_c'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_d,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_d'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_c,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_d'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_c,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_e,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
elif data['vr_ensem_c'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_d,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_e,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
elif data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_c,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_d,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
else:
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_a,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/5'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_b,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/5'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_c,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/5'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_d,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 4/5'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_e,
2022-05-23 04:47:47 +02:00
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 5/5'
}
]
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
##### Multi-AI Ensemble #####
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
#VR Model 1
2022-07-23 09:56:57 +02:00
vr_ensem_name = data['vr_ensem']
vr_ensem = f'models/Main_Models/{vr_ensem_name}.pth'
vr_param_ens_multi = data['vr_multi_USER_model_param_1']
2022-05-23 04:47:47 +02:00
#VR Model 2
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_a_name = data['vr_ensem_mdx_a']
vr_ensem_mdx_a = f'models/Main_Models/{vr_ensem_mdx_a_name}.pth'
vr_param_ens_multi_a = data['vr_multi_USER_model_param_2']
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
#VR Model 3
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_b_name = data['vr_ensem_mdx_b']
vr_ensem_mdx_b = f'models/Main_Models/{vr_ensem_mdx_b_name}.pth'
vr_param_ens_multi_b = data['vr_multi_USER_model_param_3']
2022-05-23 04:47:47 +02:00
#VR Model 4
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_c_name = data['vr_ensem_mdx_c']
vr_ensem_mdx_c = f'models/Main_Models/{vr_ensem_mdx_c_name}.pth'
vr_param_ens_multi_c = data['vr_multi_USER_model_param_4']
2022-06-13 09:07:19 +02:00
2022-07-23 09:56:57 +02:00
#MDX-Net/Demucs Model 1
2022-07-04 03:18:27 +02:00
2022-07-23 09:56:57 +02:00
if 'MDX-Net:' in data['mdx_ensem']:
mdx_model_run_mul_a = 'yes'
mdx_net_model_name = data['mdx_ensem']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_ensem = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_ensem = 'UVR_MDXNET_1_9703'
else:
mdx_ensem = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_ensem = 'UVR_MDXNET_2_9682'
else:
mdx_ensem = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_ensem = 'UVR_MDXNET_3_9662'
else:
mdx_ensem = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_ensem = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_ensem = 'UVR_MDXNET_Main'
2022-07-04 03:18:27 +02:00
else:
2022-07-23 09:56:57 +02:00
mdx_ensem = mdx_net_model_name
if 'Demucs:' in data['mdx_ensem']:
mdx_model_run_mul_a = 'no'
mdx_ensem = demucs_model_set_name_muilti_a
if data['mdx_ensem'] == 'No Model':
mdx_ensem = 'pass'
2022-07-26 07:27:05 +02:00
mdx_model_run_mul_a = 'pass'
2022-07-23 09:56:57 +02:00
#MDX-Net/Demucs Model 2
if 'MDX-Net:' in data['mdx_ensem_b']:
mdx_model_run_mul_b = 'yes'
mdx_net_model_name = data['mdx_ensem_b']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_ensem_b = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_ensem_b = 'UVR_MDXNET_1_9703'
else:
mdx_ensem_b = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_ensem_b = 'UVR_MDXNET_2_9682'
else:
mdx_ensem_b = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_ensem_b = 'UVR_MDXNET_3_9662'
else:
mdx_ensem_b = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_ensem_b = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_ensem_b = 'UVR_MDXNET_Main'
2022-07-04 03:18:27 +02:00
else:
2022-07-23 09:56:57 +02:00
mdx_ensem_b = mdx_net_model_name
if 'Demucs:' in data['mdx_ensem_b']:
mdx_model_run_mul_b = 'no'
mdx_ensem_b = demucs_model_set_name_muilti_b
2022-05-23 04:47:47 +02:00
if data['mdx_ensem_b'] == 'No Model':
mdx_ensem_b = 'pass'
2022-07-23 09:56:57 +02:00
mdx_model_run_mul_b = 'pass'
2022-07-04 03:18:27 +02:00
2022-05-23 04:47:47 +02:00
if data['vr_ensem'] == 'No Model' and data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {mdx_ensem}',
},
{
'model_name': 'pass',
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': 'pass',
2022-07-23 09:56:57 +02:00
'model_param': 'pass',
2022-05-23 04:47:47 +02:00
'model_location':'pass',
'loop_name': f'Ensemble Mode - Last Model - {mdx_ensem_b}',
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}',
},
{
'model_name': 'pass',
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': 'pass',
2022-07-23 09:56:57 +02:00
'model_param': 'pass',
2022-05-23 04:47:47 +02:00
'model_location':'pass',
'loop_name': 'Ensemble Mode - Last Model',
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_c,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_b,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
]
elif data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_a,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
}
]
elif data['vr_ensem_mdx_a'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
2022-07-23 09:56:57 +02:00
'mdx_model_run': 'pass',
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_b,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_c,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_b'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
2022-07-23 09:56:57 +02:00
'mdx_model_run': 'pass',
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_a,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_c,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
2022-07-23 09:56:57 +02:00
'mdx_model_run': 'pass',
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_a,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_b,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
}
]
else:
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
2022-07-23 09:56:57 +02:00
'mdx_model_run': 'pass',
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': 'pass',
2022-07-23 09:56:57 +02:00
'mdx_model_run': 'pass',
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_a_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_a,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem_b,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_b,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_b_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_b,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
2022-07-23 09:56:57 +02:00
'mdx_model_run': mdx_model_run_mul_a,
2022-05-23 04:47:47 +02:00
'model_name_c': vr_ensem_mdx_c_name,
2022-07-23 09:56:57 +02:00
'model_param': vr_param_ens_multi_c,
2022-05-23 04:47:47 +02:00
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
2022-07-23 09:56:57 +02:00
##### Basic MD Ensemble #####
#MDX-Net/Demucs Model 1
if 'MDX-Net:' in data['mdx_only_ensem_a']:
mdx_model_run_a = 'yes'
mdx_net_model_name = str(data['mdx_only_ensem_a'])
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#print('mdx_net_model_name ', mdx_net_model_name)
#mdx_only_ensem_a = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_a = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_a = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_a = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_a']:
mdx_model_run_a = 'no'
mdx_only_ensem_a = demucs_model_set_name_a
if data['mdx_only_ensem_a'] == 'No Model':
2022-07-26 07:27:05 +02:00
mdx_model_run_a = 'no'
2022-07-23 09:56:57 +02:00
mdx_only_ensem_a = 'pass'
#MDX-Net/Demucs Model 2
if 'MDX-Net:' in data['mdx_only_ensem_b']:
mdx_model_run_b = 'yes'
mdx_net_model_name = str(data['mdx_only_ensem_b'])
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_b = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_b = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_b = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_b = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_b']:
mdx_model_run_b = 'no'
mdx_only_ensem_b = demucs_model_set_name_b
if data['mdx_only_ensem_b'] == 'No Model':
2022-07-26 07:27:05 +02:00
mdx_model_run_b = 'no'
2022-07-23 09:56:57 +02:00
mdx_only_ensem_b = 'pass'
#MDX-Net/Demucs Model 3
if 'MDX-Net:' in data['mdx_only_ensem_c']:
mdx_model_run_c = 'yes'
mdx_net_model_name = data['mdx_only_ensem_c']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_c = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_c = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_c = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_c = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_c']:
mdx_model_run_c = 'no'
mdx_only_ensem_c = demucs_model_set_name_c
if data['mdx_only_ensem_c'] == 'No Model':
2022-07-26 07:27:05 +02:00
mdx_model_run_c = 'no'
2022-07-23 09:56:57 +02:00
mdx_only_ensem_c = 'pass'
#MDX-Net/Demucs Model 4
if 'MDX-Net:' in data['mdx_only_ensem_d']:
mdx_model_run_d = 'yes'
mdx_net_model_name = data['mdx_only_ensem_d']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_d = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_d = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_d = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_d = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_d']:
mdx_model_run_d = 'no'
mdx_only_ensem_d = demucs_model_set_name_d
if data['mdx_only_ensem_d'] == 'No Model':
2022-07-26 07:27:05 +02:00
mdx_model_run_d = 'no'
2022-07-23 09:56:57 +02:00
mdx_only_ensem_d = 'pass'
#MDX-Net/Demucs Model 5
if 'MDX-Net:' in data['mdx_only_ensem_e']:
mdx_model_run_e = 'yes'
mdx_net_model_name = data['mdx_only_ensem_e']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_e = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_e = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_e = 'UVR_MDXNET_Main'
2022-05-23 04:47:47 +02:00
else:
2022-07-23 09:56:57 +02:00
mdx_only_ensem_e = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_e']:
mdx_model_run_e = 'no'
mdx_only_ensem_e = demucs_model_set_name_e
if data['mdx_only_ensem_e'] == 'No Model':
2022-07-26 07:27:05 +02:00
mdx_model_run_e = 'no'
2022-07-23 09:56:57 +02:00
mdx_only_ensem_e = 'pass'
if data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_d'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_d'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
}
]
elif data['mdx_only_ensem_d'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
}
]
elif data['mdx_only_ensem_d'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
}
]
else:
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
2022-06-13 09:07:19 +02:00
if data['ensChoose'] == 'Multi-AI Ensemble':
2022-05-11 02:11:40 +02:00
loops = mdx_vr
2022-07-04 03:18:27 +02:00
ensefolder = 'Multi_AI_Ensemble_Outputs'
2022-07-23 09:56:57 +02:00
ensemode = 'Multi_AI_Ensemble'
if data['ensChoose'] == 'Basic VR Ensemble':
loops = Basic_Ensem
ensefolder = 'Basic_VR_Outputs'
ensemode = 'Multi_VR_Ensemble'
if data['ensChoose'] == 'Basic MD Ensemble':
loops = mdx_demuc_only
ensefolder = 'Basic_MDX_Net_Demucs_Ensemble'
ensemode = 'Basic_MDX_Net_Demucs_Ensemble'
2022-05-11 02:11:40 +02:00
#Prepare Audiofile(s)
for file_num, music_file in enumerate(data['input_paths'], start=1):
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
update_progress(**progress_kwargs,
step=0)
try:
2022-07-04 03:18:27 +02:00
if float(data['noisereduc_s']) >= 11:
text_widget.write('Error: Noise Reduction only supports values between 0-10.\nPlease set a value between 0-10 (with or without decimals) and try again.')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
2022-05-11 02:11:40 +02:00
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
#Prepare to loop models
for i, c in tqdm(enumerate(loops), disable=True, desc='Iterations..'):
2022-05-23 04:47:47 +02:00
try:
2022-07-23 09:56:57 +02:00
if c['mdx_model_name'] == 'tasnet.th':
ModelName_2 = "Tasnet_v1"
elif c['mdx_model_name'] == 'tasnet_extra.th':
ModelName_2 = "Tasnet_extra_v1"
elif c['mdx_model_name'] == 'demucs.th':
ModelName_2 = "Demucs_v1"
elif c['mdx_model_name'] == 'demucs_extra.th':
ModelName_2 = "Demucs_extra_v1"
elif c['mdx_model_name'] == 'light_extra.th':
ModelName_2 = "Light_v1"
elif c['mdx_model_name'] == 'light_extra.th':
ModelName_2 = "Light_extra_v1"
elif c['mdx_model_name'] == 'tasnet-beb46fac.th':
ModelName_2 = "Tasnet_v2"
elif c['mdx_model_name'] == 'tasnet_extra-df3777b2.th':
ModelName_2 = "Tasnet_extra_v2"
elif c['mdx_model_name'] == 'demucs48_hq-28a1282c.th':
ModelName_2 = "Demucs48_hq_v2"
elif c['mdx_model_name'] == 'demucs-e07c671f.th':
ModelName_2 = "Demucs_v2"
elif c['mdx_model_name'] == 'demucs_extra-3646af93.th':
ModelName_2 = "Demucs_extra_v2"
elif c['mdx_model_name'] == 'demucs_unittest-09ebc15f.th':
ModelName_2 = "Demucs_unittest_v2"
else:
ModelName_2 = c['mdx_model_name']
2022-05-23 04:47:47 +02:00
except:
pass
2022-05-11 02:11:40 +02:00
def determineenseFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
enseFolderName = ''
if str(ensefolder):
enseFolderName += os.path.splitext(os.path.basename(ensefolder))[0]
if enseFolderName:
2022-05-23 04:47:47 +02:00
try:
enseFolderName = '/' + enseFolderName + '_' + str(timestampnum)
except:
enseFolderName = '/' + enseFolderName + '_' + str(randomnum)
2022-05-11 02:11:40 +02:00
return enseFolderName
enseFolderName = determineenseFolderName()
2022-05-23 04:47:47 +02:00
2022-05-11 02:11:40 +02:00
if enseFolderName:
folder_path = f'{data["export_path"]}{enseFolderName}'
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
# Determine File Name
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
base_name = f'{data["export_path"]}{enseFolderName}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
enseExport = f'{data["export_path"]}{enseFolderName}/'
trackname = f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
2022-07-06 09:57:56 +02:00
def get_numbers_from_filename(filename):
return re.search(r'\d+', filename).group(0)
foldernum = get_numbers_from_filename(enseFolderName)
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
if c['model_location'] == 'pass':
pass
else:
presentmodel = Path(c['model_location'])
if presentmodel.is_file():
2022-06-13 09:07:19 +02:00
print(f'The file {presentmodel} exists')
2022-05-23 04:47:47 +02:00
else:
2022-06-13 09:07:19 +02:00
if data['ensChoose'] == 'Multi-AI Ensemble':
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + 'Model "' + c['model_name'] + '.pth" is missing.\n')
2022-07-23 09:56:57 +02:00
text_widget.write(base_text + 'This model can be downloaded straight from the \"Settings\" options.\n')
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + f'If the error persists, please verify all models are present.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
text_widget.write(base_text + 'Model "' + c['model_name'] + '.pth" is missing.\n')
text_widget.write(base_text + 'Installation of v5 Model Expansion Pack required to use this model.\n\n')
continue
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget.write(c['loop_name'] + '\n\n')
text_widget.write(base_text + 'Loading ' + c['model_name_c'] + '... ')
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
aggresive_set = float(data['agg']/100)
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
model_size = math.ceil(os.stat(c['model_location']).st_size / 1024)
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
nets = importlib.import_module('lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget.write('Done!\n')
ModelName=(c['model_location'])
2022-07-23 09:56:57 +02:00
ModelParamSettings=(c['model_param'])
2022-05-23 04:47:47 +02:00
#Package Models
2022-07-23 09:56:57 +02:00
if ModelParamSettings == 'Auto':
model_hash = hashlib.md5(open(ModelName,'rb').read()).hexdigest()
model_params = []
model_params = lib_v5.filelist.provide_model_param_hash(model_hash)
#print(model_params)
if model_params[0] == 'Not Found Using Hash':
model_params = []
model_params = lib_v5.filelist.provide_model_param_name(ModelName)
if model_params[0] == 'Not Found Using Name':
text_widget.write(base_text + f'Unable to set model parameters automatically with the selected model. Continue?\n')
confirm = tk.messagebox.askyesno(title='Unrecognized Model Detected',
message=f'\nThe application could not automatically set the model param for the selected model.\n\n' +
f'Would you like to select the Model Param file for this model?\n\n' +
f'This model will be skipped if no Model Param is selected.')
if confirm:
model_param_selection = filedialog.askopenfilename(initialdir='lib_v5/modelparams',
title=f'Select Model Param',
filetypes=[("Model Param", "*.json")])
model_param_file_path = str(model_param_selection)
model_param_file = os.path.splitext(os.path.basename(model_param_file_path))[0] + '.json'
model_params = [model_param_file_path, model_param_file]
with open(f"lib_v5/filelists/model_cache/vr_param_cache/{model_hash}.txt", 'w') as f:
f.write(model_param_file)
if model_params[0] == '':
text_widget.write(base_text + f'Model param not selected.\n')
text_widget.write(base_text + f'Moving on to next model...\n\n')
continue
else:
pass
else:
text_widget.write(base_text + f'Model param not selected.\n')
text_widget.write(base_text + f'Moving on to next model...\n\n')
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
continue
else:
model_param_file_path = f'lib_v5/modelparams/{ModelParamSettings}'
model_params = [model_param_file_path, ModelParamSettings]
2022-05-23 04:47:47 +02:00
ModelName_1=(c['model_name'])
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
#print('model param function output ', model_params)
print('Model Parameters:', model_params[0])
text_widget.write(base_text + 'Loading assigned model parameters ' + '\"' + model_params[1] + '\"... ')
2022-05-23 04:47:47 +02:00
2022-07-23 09:56:57 +02:00
mp = ModelParameters(model_params[0])
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget.write('Done!\n')
#Load model
if os.path.isfile(c['model_location']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
model.load_state_dict(torch.load(c['model_location'],
map_location=device))
if torch.cuda.is_available() and data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(data['gpu']))
model.to(device)
model_name = os.path.basename(c["model_name"])
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
# -Go through the different steps of Separation-
2022-05-23 04:47:47 +02:00
# Wave source
text_widget.write(base_text + 'Loading audio source... ')
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
bands_n = len(mp.param['band'])
for d in range(bands_n, 0, -1):
bp = mp.param['band'][d]
if d == bands_n: # high-end band
X_wave[d], _ = librosa.load(
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'],
mp.param['mid_side_b2'], mp.param['reverse'])
if d == bands_n and data['high_end_process'] != 'none':
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
text_widget.write('Done!\n')
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
update_progress(**progress_kwargs,
step=0.1)
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + 'Loading the stft of audio source... ')
text_widget.write('Done!\n')
text_widget.write(base_text + "Please Wait...\n")
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
del X_wave, X_spec_s
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
def inference(X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
model.eval()
with torch.no_grad():
preds = []
iterations = [n_window]
total_iterations = sum(iterations)
text_widget.write(base_text + "Processing "f"{total_iterations} Slices... ")
for i in tqdm(range(n_window)):
update_progress(**progress_kwargs,
step=(0.1 + (0.8/n_window * i)))
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
text_widget.write('Done!\n')
return pred
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
X_mag, X_phase = preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
2022-05-11 02:11:40 +02:00
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
2022-05-23 04:47:47 +02:00
pred = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred = pred[:, :, :n_frame]
if data['tta']:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
pred_tta = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
return pred * coef, X_mag, np.exp(1.j * X_phase)
aggressiveness = {'value': aggresive_set, 'split_bin': mp.param['band'][1]['crop_stop']}
if data['tta']:
text_widget.write(base_text + "Running Inferences (TTA)... \n")
2022-05-11 02:11:40 +02:00
else:
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + "Running Inference... \n")
pred, X_mag, X_phase = inference(X_spec_m,
device,
model, aggressiveness)
# update_progress(**progress_kwargs,
# step=0.8)
# Postprocess
if data['postprocess']:
2022-05-11 02:11:40 +02:00
try:
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + 'Post processing...')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
text_widget.write(' Done!\n')
except Exception as e:
text_widget.write('\n' + base_text + 'Post process failed, check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to run Post Processing on "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
# Inverse stft
# nopep8
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
2022-05-11 02:11:40 +02:00
if data['voc_only']:
pass
else:
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + 'Saving Instrumental... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], y_spec_m, input_high_end, mp)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end_)
if data['voc_only']:
2022-05-11 02:11:40 +02:00
pass
2022-05-23 04:47:47 +02:00
else:
text_widget.write('Done!\n')
2022-05-11 02:11:40 +02:00
else:
2022-05-23 04:47:47 +02:00
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
if data['voc_only']:
2022-05-11 02:11:40 +02:00
pass
2022-05-23 04:47:47 +02:00
else:
text_widget.write('Done!\n')
if data['inst_only']:
pass
2022-05-11 02:11:40 +02:00
else:
2022-05-23 04:47:47 +02:00
text_widget.write(base_text + 'Saving Vocals... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], v_spec_m, input_high_end, mp)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp, input_high_end_h, input_high_end_)
if data['inst_only']:
pass
else:
text_widget.write('Done!\n')
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
if data['inst_only']:
pass
else:
text_widget.write('Done!\n')
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
update_progress(**progress_kwargs,
step=1)
# Save output music files
save_files(wav_instrument, wav_vocals)
# Save output image
if data['output_image']:
with open('{}_{}_Instruments.jpg'.format(base_name, c['model_name']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_{}_Vocals.jpg'.format(base_name, c['model_name']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
2022-07-23 09:56:57 +02:00
text_widget.write(base_text + 'Completed Separation!\n\n')
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
###################################
if data['ensChoose'] == 'Multi-AI Ensemble' or data['ensChoose'] == 'Basic MD Ensemble':
if data['demucsmodel']:
demucs_switch = 'on'
else:
demucs_switch = 'off'
if data['demucs_only']:
demucs_only = 'on'
else:
demucs_only = 'off'
if c['mdx_model_name'] == 'tasnet.th':
post_mdx_name = "Tasnet v1"
elif c['mdx_model_name'] == 'tasnet_extra.th':
post_mdx_name = "Tasnet_extra v1"
elif c['mdx_model_name'] == 'demucs.th':
post_mdx_name = "Demucs v1"
elif c['mdx_model_name'] == 'demucs_extra.th':
post_mdx_name = "Demucs_extra v1"
elif c['mdx_model_name'] == 'light_extra.th':
post_mdx_name = "Light v1"
elif c['mdx_model_name'] == 'light_extra.th':
post_mdx_name = "Light_extra v1"
elif c['mdx_model_name'] == 'tasnet-beb46fac.th':
post_mdx_name = "Tasnet v2"
elif c['mdx_model_name'] == 'tasnet_extra-df3777b2.th':
post_mdx_name = "Tasnet_extra v2"
elif c['mdx_model_name'] == 'demucs48_hq-28a1282c.th':
post_mdx_name = "Demucs48_hq v2"
elif c['mdx_model_name'] == 'demucs-e07c671f.th':
post_mdx_name = "Demucs v2"
elif c['mdx_model_name'] == 'demucs_extra-3646af93.th':
post_mdx_name = "Demucs_extra v2"
elif c['mdx_model_name'] == 'demucs_unittest-09ebc15f.th':
post_mdx_name = "Demucs_unittest v2"
else:
post_mdx_name = c['mdx_model_name']
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
mdx_name = c['mdx_model_name']
2022-07-23 09:56:57 +02:00
2022-05-23 04:47:47 +02:00
if c['mdx_model_name'] == 'pass':
2022-05-11 02:11:40 +02:00
pass
else:
2022-07-23 09:56:57 +02:00
text_widget.write('Ensemble Mode - Running Model - ' + post_mdx_name + '\n\n')
if c['mdx_model_run'] == 'no':
if 'UVR' in mdx_name:
demucs_only = 'on'
demucs_switch = 'on'
demucs_model_set = mdx_name
model_set = ''
model_set_name = 'UVR'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
2022-07-04 03:18:27 +02:00
else:
2022-07-23 09:56:57 +02:00
demucs_only = 'on'
demucs_switch = 'on'
demucs_model_set = mdx_name
model_set = ''
model_set_name = 'extra'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if c['mdx_model_run'] == 'yes':
2022-07-04 03:18:27 +02:00
demucs_only = 'off'
2022-07-23 09:56:57 +02:00
model_set = f"{mdx_name}.onnx"
model_set_name = mdx_name
demucs_model_set = demucs_model_set_name
mdx_model_path = f'models/MDX_Net_Models/{mdx_name}.onnx'
model_hash = hashlib.md5(open(mdx_model_path,'rb').read()).hexdigest()
model_params_mdx = []
model_params_mdx = lib_v5.filelist.provide_mdx_model_param_name(model_hash)
modeltype = model_params_mdx[0]
noise_pro = model_params_mdx[1]
stemset_n = model_params_mdx[2]
if autocompensate:
compensate = model_params_mdx[3]
2022-07-04 03:18:27 +02:00
else:
compensate = data['compensate']
2022-07-23 09:56:57 +02:00
source_val = model_params_mdx[4]
n_fft_scale_set = model_params_mdx[5]
dim_f_set = model_params_mdx[6]
#print(model_params_mdx)
2022-06-13 09:07:19 +02:00
print('demucs_only? ', demucs_only)
2022-06-06 22:44:20 +02:00
if data['noise_pro_select'] == 'Auto Select':
noise_pro_set = noise_pro
else:
noise_pro_set = data['noise_pro_select']
2022-05-23 04:47:47 +02:00
update_progress(**progress_kwargs,
step=0)
if data['noisereduc_s'] == 'None':
pass
else:
if not os.path.isfile("lib_v5\sox\sox.exe"):
data['noisereduc_s'] = 'None'
data['non_red'] = False
widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n')
widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n')
widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n')
e = os.path.join(data["export_path"])
pred = Predictor()
2022-07-23 09:56:57 +02:00
if c['mdx_model_run'] == 'yes':
if stemset_n == '(Bass)' or stemset_n == '(Drums)' or stemset_n == '(Other)':
widget_text.write(base_text + 'Only vocal and instrumental MDX-Net models are supported in \nensemble mode.\n')
widget_text.write(base_text + 'Moving on to next model...\n\n')
continue
if modeltype == 'Not Set' or \
noise_pro == 'Not Set' or \
stemset_n == 'Not Set' or \
compensate == 'Not Set' or \
source_val == 'Not Set' or \
n_fft_scale_set == 'Not Set' or \
dim_f_set == 'Not Set':
confirm = tk.messagebox.askyesno(title='Unrecognized Model Detected',
message=f'\nWould you like to set the correct model parameters for this model before continuing?\n')
if confirm:
pred.mdx_options()
else:
text_widget.write(base_text + 'An unrecognized model has been detected.\n')
text_widget.write(base_text + 'Please configure the ONNX model settings accordingly and try again.\n')
text_widget.write(base_text + 'Moving on to next model...\n\n')
continue
2022-06-13 09:07:19 +02:00
pred.prediction_setup()
2022-05-23 04:47:47 +02:00
# split
pred.prediction(
m=music_file,
)
2022-05-11 02:11:40 +02:00
else:
pass
# Emsembling Outputs
def get_files(folder="", prefix="", suffix=""):
return [f"{folder}{i}" for i in os.listdir(folder) if i.startswith(prefix) if i.endswith(suffix)]
2022-05-23 04:47:47 +02:00
if data['appendensem'] == False:
2022-07-06 09:57:56 +02:00
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
2022-05-23 04:47:47 +02:00
else:
2022-07-06 09:57:56 +02:00
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
2022-05-11 02:11:40 +02:00
if data['voc_only']:
ensembles = vocal
elif data['inst_only']:
ensembles = inst
else:
ensembles = voc_inst
try:
for i, e in tqdm(enumerate(ensembles), desc="Ensembling..."):
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
2022-07-06 09:57:56 +02:00
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
2022-07-06 09:57:56 +02:00
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
2022-05-11 02:11:40 +02:00
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}".\n\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
else:
2022-06-02 02:00:43 +02:00
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
2022-05-11 02:11:40 +02:00
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}".\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
text_widget.write("Done!\n")
except:
text_widget.write('\n' + base_text + 'Not enough files to ensemble.')
pass
update_progress(**progress_kwargs,
step=0.95)
text_widget.write("\n")
try:
if not data['save']: # Deletes all outputs if Save All Outputs isn't checked
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
if not data['save']:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
if data['save'] and data['saveFormat'] == 'Mp3':
try:
text_widget.write(base_text + 'Saving all ensemble outputs in Mp3... ')
path = enseExport
#Change working directory
os.chdir(path)
audio_files = os.listdir()
for file in audio_files:
#spliting the file into the name and the extension
name, ext = os.path.splitext(file)
if ext == ".wav":
if trackname in file:
musfile = pydub.AudioSegment.from_wav(file)
#rename them using the old name + ".wav"
2022-07-06 09:57:56 +02:00
musfile.export("{0}.mp3".format(name), format="mp3", bitrate=mp3_bit_set)
2022-05-11 02:11:40 +02:00
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
except:
pass
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
text_widget.write('Done!\n\n')
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
except Exception as e:
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'\nError Received while attempting to save ensembled outputs as mp3s.\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['save'] and data['saveFormat'] == 'Flac':
try:
text_widget.write(base_text + 'Saving all ensemble outputs in Flac... ')
path = enseExport
#Change working directory
os.chdir(path)
audio_files = os.listdir()
for file in audio_files:
#spliting the file into the name and the extension
name, ext = os.path.splitext(file)
if ext == ".wav":
if trackname in file:
musfile = pydub.AudioSegment.from_wav(file)
#rename them using the old name + ".wav"
musfile.export("{0}.flac".format(name), format="flac")
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
except:
pass
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
text_widget.write('Done!\n\n')
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
except Exception as e:
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'\nError Received while attempting to ensembled outputs as Flacs.\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
try:
os.remove('temp.wav')
except:
pass
if len(os.listdir(enseExport)) == 0: #Check if the folder is empty
shutil.rmtree(folder_path) #Delete folder if empty
else:
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': len(data['input_paths'])}
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=len(data['input_paths']))
try:
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
music_file = data['input_paths']
if len(data['input_paths']) <= 1:
text_widget.write(base_text + "Not enough files to process.\n")
pass
else:
update_progress(**progress_kwargs,
step=0.2)
savefilename = (data['input_paths'][0])
trackname1 = f'{os.path.splitext(os.path.basename(savefilename))[0]}'
2022-07-06 09:57:56 +02:00
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
2022-05-11 02:11:40 +02:00
2022-07-06 09:57:56 +02:00
if data['settest']:
try:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(timestampnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(timestampnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(timestampnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(timestampnum, trackname1),
'type': 'Normal Inversion'
}
]
except:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(randomnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(randomnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(randomnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(randomnum, trackname1),
'type': 'Normal Inversion'
}
]
else:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_Manual_Ensemble_(Min Spec)'.format(trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_Manual_Ensemble_(Max Spec)'.format(trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_si'.format(trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_ni'.format(trackname1),
'type': 'Normal Inversion'
}
]
2022-05-11 02:11:40 +02:00
if data['algo'] == 'Instrumentals (Min Spec)':
ensem = insts
if data['algo'] == 'Vocals (Max Spec)':
ensem = vocals
if data['algo'] == 'Invert (Spectral)':
ensem = invert_spec
if data['algo'] == 'Invert (Normal)':
ensem = invert_nor
#Prepare to loop models
if data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
for i, e in tqdm(enumerate(ensem), desc="Ensembling..."):
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(data['input_paths'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
2022-07-06 09:57:56 +02:00
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
2022-07-06 09:57:56 +02:00
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
2022-05-11 02:11:40 +02:00
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3.')
text_widget.write('\n' + base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
text_widget.write(base_text + f'Complete!\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
2022-06-13 09:07:19 +02:00
f'Error Received while attempting to run Manual Ensemble:\n' +
2022-05-11 02:11:40 +02:00
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL)
return
if data['saveFormat'] == 'Flac':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
text_widget.write('\n' + base_text + 'Failed to save output as Flac.\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
text_widget.write(base_text + f'Complete!\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
2022-06-13 09:07:19 +02:00
f'Error Received while attempting to run Manual Ensemble:\n' +
2022-05-11 02:11:40 +02:00
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL)
return
text_widget.write("Done!\n")
if data['algo'] == 'Invert (Spectral)' and data['algo'] == 'Invert (Normal)':
if len(data['input_paths']) != 2:
text_widget.write(base_text + "Invalid file count.\n")
pass
else:
for i, e in tqdm(enumerate(ensem), desc="Inverting..."):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(data['input_paths'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if data['algo'] == 'Invert (Spectral)':
text_widget.write(base_text + "Performing " + e['type'] + "... ")
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
2022-07-06 09:57:56 +02:00
spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
if data['algo'] == 'Invert (Normal)':
v_spec = specs[0] - specs[1]
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
2022-07-06 09:57:56 +02:00
spec_utils.cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'], subtype=wav_type_set)
2022-05-11 02:11:40 +02:00
text_widget.write("Done!\n")
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
2022-05-11 08:42:20 +02:00
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
2022-05-11 02:11:40 +02:00
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
2022-05-11 08:42:20 +02:00
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
2022-05-11 02:11:40 +02:00
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmissing in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application could not detect this MDX-Net model on your system.\n' +
f'Please make sure all the models are present in the correct directory.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
2022-05-11 23:05:05 +02:00
if onnxmemerror in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
2022-05-23 04:47:47 +02:00
if onnxmemerror2 in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
2022-05-11 02:11:40 +02:00
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
2022-05-23 04:47:47 +02:00
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if systemmemerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough system memory to use this model.\n' +
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if enex_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to locate a model you selected for this ensemble.\n')
text_widget.write(f'\nPlease do the following to use all compatible models:\n\n1. Navigate to the \"Updates\" tab in the Help Guide.\n2. Download and install the v5 Model Expansion Pack.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, please verify all models are present.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to locate a model you selected for this ensemble.\n' +
f'\nPlease do the following to use all compatible models:\n\n1. Navigate to the \"Updates\" tab in the Help Guide.\n2. Download and install the model expansion pack.\n3. Then try again.\n\n' +
f'If the error persists, please verify all models are present.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
2022-08-01 01:49:21 +02:00
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if demucs_model_missing_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The selected Demucs model is missing.\n\n')
text_widget.write(f'Please download the model or make sure it is in the correct directory.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The selected Demucs model is missing.\n\n' +
f'Please download the model or make sure it is in the correct directory.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
2022-05-11 02:11:40 +02:00
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
return
update_progress(**progress_kwargs,
step=1)
print('Done!')
progress_var.set(0)
2022-06-13 09:07:19 +02:00
if not data['ensChoose'] == 'Manual Ensemble':
2022-05-11 02:11:40 +02:00
text_widget.write(base_text + f'Conversions Completed!\n')
elif data['algo'] == 'Instrumentals (Min Spec)' and len(data['input_paths']) <= 1 or data['algo'] == 'Vocals (Max Spec)' and len(data['input_paths']) <= 1:
text_widget.write(base_text + f'Please select 2 or more files to use this feature and try again.\n')
elif data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
text_widget.write(base_text + f'Ensemble Complete!\n')
elif len(data['input_paths']) != 2 and data['algo'] == 'Invert (Spectral)' or len(data['input_paths']) != 2 and data['algo'] == 'Invert (Normal)':
text_widget.write(base_text + f'Please select exactly 2 files to extract difference.\n')
elif data['algo'] == 'Invert (Spectral)' or data['algo'] == 'Invert (Normal)':
text_widget.write(base_text + f'Complete!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) #Enable Button