2022-07-23 09:56:57 +02:00
from collections import defaultdict
from datetime import datetime
from demucs . apply import BagOfModels , apply_model
from demucs . hdemucs import HDemucs
from demucs . model_v2 import Demucs
from demucs . pretrained import get_model as _gm
from demucs . tasnet_v2 import ConvTasNet
from demucs . utils import apply_model_v1
from demucs . utils import apply_model_v2
2022-05-11 02:11:40 +02:00
from functools import total_ordering
2022-07-23 09:56:57 +02:00
from lib_v5 import dataset
from lib_v5 import spec_utils
from lib_v5 . model_param_init import ModelParameters
from models import get_models , spec_effects
2022-05-11 02:11:40 +02:00
from pathlib import Path
2022-05-23 04:47:47 +02:00
from random import randrange
2022-07-23 09:56:57 +02:00
from statistics import mode
2022-05-11 02:11:40 +02:00
from tqdm import tqdm
2022-07-23 09:56:57 +02:00
from tqdm import tqdm
from tkinter import filedialog
import tkinter . ttk as ttk
import tkinter . messagebox
import tkinter . filedialog
import tkinter . simpledialog
import tkinter . font
import tkinter as tk
from tkinter import *
from tkinter . tix import *
import lib_v5 . filelist
2022-05-11 02:11:40 +02:00
import cv2
2022-07-23 09:56:57 +02:00
import gzip
import hashlib
import importlib
2022-05-11 02:11:40 +02:00
import librosa
2022-07-23 09:56:57 +02:00
import json
import math
2022-05-11 02:11:40 +02:00
import numpy as np
2022-07-23 09:56:57 +02:00
import numpy as np
import onnxruntime as ort
import os
import pathlib
import psutil
import pydub
import re
2022-05-11 02:11:40 +02:00
import shutil
2022-07-23 09:56:57 +02:00
import soundfile as sf
import soundfile as sf
import subprocess
import sys
import time
import time # Timer
2022-05-11 02:11:40 +02:00
import tkinter as tk
2022-07-23 09:56:57 +02:00
import torch
import torch
2022-05-11 02:11:40 +02:00
import traceback # Error Message Recent Calls
2022-07-23 09:56:57 +02:00
import warnings
2022-05-11 02:11:40 +02:00
class Predictor ( ) :
def __init__ ( self ) :
pass
2022-07-23 09:56:57 +02:00
def mdx_options ( self ) :
"""
Open Advanced MDX Options
"""
self . okVar = tk . IntVar ( )
self . n_fft_scale_set_var = tk . StringVar ( value = ' 6144 ' )
self . dim_f_set_var = tk . StringVar ( value = ' 2048 ' )
self . mdxnetModeltype_var = tk . StringVar ( value = ' Vocals ' )
self . noise_pro_select_set_var = tk . StringVar ( value = ' MDX-NET_Noise_Profile_14_kHz ' )
self . compensate_v_var = tk . StringVar ( value = 1.03597672895 )
top = Toplevel ( )
top . geometry ( " 740x550 " )
window_height = 740
window_width = 550
top . title ( " Specify Parameters " )
top . resizable ( False , False ) # This code helps to disable windows from resizing
screen_width = top . winfo_screenwidth ( )
screen_height = top . winfo_screenheight ( )
x_cordinate = int ( ( screen_width / 2 ) - ( window_width / 2 ) )
y_cordinate = int ( ( screen_height / 2 ) - ( window_height / 2 ) )
top . geometry ( " {} x {} + {} + {} " . format ( window_width , window_height , x_cordinate , y_cordinate ) )
# change title bar icon
top . iconbitmap ( ' img \\ UVR-Icon-v2.ico ' )
tabControl = ttk . Notebook ( top )
tabControl . pack ( expand = 1 , fill = " both " )
tabControl . grid_rowconfigure ( 0 , weight = 1 )
tabControl . grid_columnconfigure ( 0 , weight = 1 )
frame0 = Frame ( tabControl , highlightbackground = ' red ' , highlightthicknes = 0 )
frame0 . grid ( row = 0 , column = 0 , padx = 0 , pady = 0 )
frame0 . tkraise ( frame0 )
space_small = ' ' * 20
space_small_1 = ' ' * 10
l0 = tk . Label ( frame0 , text = f ' { space_small } Stem Type { space_small } ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 3 , column = 0 , padx = 0 , pady = 5 )
l0 = ttk . OptionMenu ( frame0 , self . mdxnetModeltype_var , None , ' Vocals ' , ' Instrumental ' )
l0 . grid ( row = 4 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' N_FFT Scale ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 5 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = f ' { space_small_1 } (Manual Set) { space_small_1 } ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 5 , column = 1 , padx = 0 , pady = 5 )
self . options_n_fft_scale_Opt = l0 = ttk . OptionMenu ( frame0 , self . n_fft_scale_set_var , None , ' 4096 ' , ' 6144 ' , ' 7680 ' , ' 8192 ' , ' 16384 ' )
self . options_n_fft_scale_Opt
l0 . grid ( row = 6 , column = 0 , padx = 0 , pady = 5 )
self . options_n_fft_scale_Entry = l0 = ttk . Entry ( frame0 , textvariable = self . n_fft_scale_set_var , justify = ' center ' )
self . options_n_fft_scale_Entry
l0 . grid ( row = 6 , column = 1 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Dim_f ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 7 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' (Manual Set) ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 7 , column = 1 , padx = 0 , pady = 5 )
self . options_dim_f_Opt = l0 = ttk . OptionMenu ( frame0 , self . dim_f_set_var , None , ' 2048 ' , ' 3072 ' , ' 4096 ' )
self . options_dim_f_Opt
l0 . grid ( row = 8 , column = 0 , padx = 0 , pady = 5 )
self . options_dim_f_Entry = l0 = ttk . Entry ( frame0 , textvariable = self . dim_f_set_var , justify = ' center ' )
self . options_dim_f_Entry
l0 . grid ( row = 8 , column = 1 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Noise Profile ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 9 , column = 0 , padx = 0 , pady = 5 )
l0 = ttk . OptionMenu ( frame0 , self . noise_pro_select_set_var , None , ' MDX-NET_Noise_Profile_14_kHz ' , ' MDX-NET_Noise_Profile_17_kHz ' , ' MDX-NET_Noise_Profile_Full_Band ' )
l0 . grid ( row = 10 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Volume Compensation ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 11 , column = 0 , padx = 0 , pady = 10 )
self . options_compensate = l0 = ttk . Entry ( frame0 , textvariable = self . compensate_v_var , justify = ' center ' )
self . options_compensate
l0 . grid ( row = 12 , column = 0 , padx = 0 , pady = 0 )
l0 = ttk . Button ( frame0 , text = " Continue & Set These Parameters " , command = lambda : self . okVar . set ( 1 ) )
l0 . grid ( row = 13 , column = 0 , padx = 0 , pady = 30 )
def stop ( ) :
widget_text . write ( f ' Please configure the ONNX model settings accordingly and try again. \n \n ' )
widget_text . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
gui_progress_bar . set ( 0 )
widget_button . configure ( state = tk . NORMAL ) # Enable Button
top . destroy ( )
return
l0 = ttk . Button ( frame0 , text = " Stop Process " , command = stop )
l0 . grid ( row = 13 , column = 1 , padx = 0 , pady = 30 )
#print('print from top ', model_hash)
#source_val = 0
def change_event ( ) :
self . okVar . set ( 1 )
#top.destroy()
pass
top . protocol ( " WM_DELETE_WINDOW " , change_event )
frame0 . wait_variable ( self . okVar )
global n_fft_scale_set
global dim_f_set
global modeltype
global stemset_n
global source_val
global noise_pro_set
global compensate
global demucs_model_set
stemtype = self . mdxnetModeltype_var . get ( )
if stemtype == ' Vocals ' :
modeltype = ' v '
stemset_n = ' (Vocals) '
source_val = 3
if stemtype == ' Instrumental ' :
modeltype = ' v '
stemset_n = ' (Instrumental) '
source_val = 2
if stemtype == ' Other ' :
modeltype = ' o '
stemset_n = ' (Other) '
source_val = 2
if stemtype == ' Drums ' :
modeltype = ' d '
stemset_n = ' (Drums) '
source_val = 1
if stemtype == ' Bass ' :
modeltype = ' b '
stemset_n = ' (Bass) '
source_val = 0
compensate = self . compensate_v_var . get ( )
n_fft_scale_set = int ( self . n_fft_scale_set_var . get ( ) )
dim_f_set = int ( self . dim_f_set_var . get ( ) )
noise_pro_set = self . noise_pro_select_set_var . get ( )
mdx_model_params = {
' modeltype ' : modeltype ,
' stemset_n ' : stemset_n ,
' source_val ' : source_val ,
' compensate ' : compensate ,
' n_fft_scale_set ' : n_fft_scale_set ,
' dim_f_set ' : dim_f_set ,
' noise_pro ' : noise_pro_set ,
}
mdx_model_params_r = json . dumps ( mdx_model_params , indent = 4 )
with open ( f " lib_v5/filelists/model_cache/mdx_model_cache/ { model_hash } .json " , " w " ) as outfile :
outfile . write ( mdx_model_params_r )
if stemset_n == ' (Instrumental) ' :
if not ' UVR ' in demucs_model_set :
widget_text . write ( base_text + ' The selected Demucs model cannot be used with this model. \n ' )
widget_text . write ( base_text + ' Only 2 stem Demucs models are compatible with this model. \n ' )
widget_text . write ( base_text + ' Setting Demucs model to \" UVR_Demucs_Model_1 \" . \n \n ' )
demucs_model_set = ' UVR_Demucs_Model_1 '
top . destroy ( )
2022-06-13 09:07:19 +02:00
def prediction_setup ( self ) :
2022-05-23 04:47:47 +02:00
global device
if data [ ' gpu ' ] > = 0 :
2022-06-13 09:07:19 +02:00
device = torch . device ( ' cuda:0 ' if torch . cuda . is_available ( ) else ' cpu ' )
2022-05-23 04:47:47 +02:00
if data [ ' gpu ' ] == - 1 :
device = torch . device ( ' cpu ' )
2022-06-13 09:07:19 +02:00
if demucs_switch == ' on ' :
2022-07-23 09:56:57 +02:00
#print('check model here: ', demucs_model_set)
#'demucs.th.gz', 'demucs_extra.th.gz', 'light.th.gz', 'light_extra.th.gz'
if ' tasnet.th ' in demucs_model_set or ' tasnet_extra.th ' in demucs_model_set or \
' demucs.th ' in demucs_model_set or \
' demucs_extra.th ' in demucs_model_set or ' light.th ' in demucs_model_set or \
' light_extra.th ' in demucs_model_set or ' v1 ' in demucs_model_set or ' .gz ' in demucs_model_set :
load_from = " models/Demucs_Models/ " f " { demucs_model_set } "
if str ( load_from ) . endswith ( " .gz " ) :
load_from = gzip . open ( load_from , " rb " )
klass , args , kwargs , state = torch . load ( load_from )
self . demucs = klass ( * args , * * kwargs )
widget_text . write ( base_text + ' Loading Demucs v1 model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
self . demucs . to ( device )
self . demucs . load_state_dict ( state )
widget_text . write ( ' Done! \n ' )
elif ' tasnet-beb46fac.th ' in demucs_model_set or ' tasnet_extra-df3777b2.th ' in demucs_model_set or \
' demucs48_hq-28a1282c.th ' in demucs_model_set or ' demucs-e07c671f.th ' in demucs_model_set or \
' demucs_extra-3646af93.th ' in demucs_model_set or ' demucs_unittest-09ebc15f.th ' in demucs_model_set or \
' v2 ' in demucs_model_set :
if ' 48 ' in demucs_model_set :
channels = 48
elif ' unittest ' in demucs_model_set :
channels = 4
else :
channels = 64
if ' tasnet ' in demucs_model_set :
self . demucs = ConvTasNet ( sources = [ " drums " , " bass " , " other " , " vocals " ] , X = 10 )
else :
self . demucs = Demucs ( sources = [ " drums " , " bass " , " other " , " vocals " ] , channels = channels )
widget_text . write ( base_text + ' Loading Demucs v2 model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
self . demucs . to ( device )
self . demucs . load_state_dict ( torch . load ( " models/Demucs_Models/ " f " { demucs_model_set } " ) )
widget_text . write ( ' Done! \n ' )
self . demucs . eval ( )
else :
if ' UVR ' in demucs_model_set :
self . demucs = HDemucs ( sources = [ " other " , " vocals " ] )
else :
self . demucs = HDemucs ( sources = [ " drums " , " bass " , " other " , " vocals " ] )
widget_text . write ( base_text + ' Loading Demucs model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
path_d = Path ( ' models/Demucs_Models/v3_repo ' )
#print('What Demucs model was chosen? ', demucs_model_set)
self . demucs = _gm ( name = demucs_model_set , repo = path_d )
self . demucs . to ( device )
self . demucs . eval ( )
widget_text . write ( ' Done! \n ' )
if isinstance ( self . demucs , BagOfModels ) :
widget_text . write ( base_text + f " Selected Demucs model is a bag of { len ( self . demucs . models ) } model(s). \n " )
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
self . onnx_models = { }
c = 0
2022-07-23 09:56:57 +02:00
if demucs_only == ' on ' :
pass
else :
self . models = get_models ( ' tdf_extra ' , load = False , device = cpu , stems = modeltype , n_fft_scale = n_fft_scale_set , dim_f = dim_f_set )
widget_text . write ( base_text + ' Loading ONNX model... ' )
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = 0.1 )
c + = 1
if data [ ' gpu ' ] > = 0 :
if torch . cuda . is_available ( ) :
run_type = [ ' CUDAExecutionProvider ' ]
else :
data [ ' gpu ' ] = - 1
widget_text . write ( " \n " + base_text + " No NVIDIA GPU detected. Switching to CPU... " )
run_type = [ ' CPUExecutionProvider ' ]
2022-05-23 04:47:47 +02:00
elif data [ ' gpu ' ] == - 1 :
2022-05-11 02:11:40 +02:00
run_type = [ ' CPUExecutionProvider ' ]
2022-06-03 11:08:37 +02:00
2022-06-13 09:07:19 +02:00
if demucs_only == ' off ' :
self . onnx_models [ c ] = ort . InferenceSession ( os . path . join ( ' models/MDX_Net_Models ' , model_set ) , providers = run_type )
2022-07-23 09:56:57 +02:00
#print(demucs_model_set)
2022-06-03 11:08:37 +02:00
widget_text . write ( ' Done! \n ' )
2022-06-13 09:07:19 +02:00
elif demucs_only == ' on ' :
2022-07-23 09:56:57 +02:00
#print(demucs_model_set)
2022-06-13 09:07:19 +02:00
pass
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
def prediction ( self , m ) :
2022-06-13 09:07:19 +02:00
mix , samplerate = librosa . load ( m , mono = False , sr = 44100 )
2022-05-11 02:11:40 +02:00
if mix . ndim == 1 :
mix = np . asfortranarray ( [ mix , mix ] )
2022-06-13 09:07:19 +02:00
samplerate = samplerate
2022-05-11 02:11:40 +02:00
mix = mix . T
sources = self . demix ( mix . T )
widget_text . write ( base_text + ' Inferences complete! \n ' )
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
c = - 1
#Main Save Path
save_path = os . path . dirname ( base_name )
2022-07-26 07:27:05 +02:00
#Write name
if stemset_n == ' (Vocals) ' :
stem_text_a = ' Vocals '
stem_text_b = ' Instrumental '
elif stemset_n == ' (Instrumental) ' :
stem_text_a = ' Instrumental '
stem_text_b = ' Vocals '
2022-05-11 02:11:40 +02:00
#Vocal Path
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Vocals) ' :
vocal_name = ' (Vocals) '
elif stemset_n == ' (Instrumental) ' :
vocal_name = ' (Instrumental) '
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { vocal_name } ' , )
else :
vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { vocal_name } ' , )
#Instrumental Path
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Vocals) ' :
Instrumental_name = ' (Instrumental) '
elif stemset_n == ' (Instrumental) ' :
Instrumental_name = ' (Vocals) '
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { Instrumental_name } ' , )
else :
Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { Instrumental_name } ' , )
#Non-Reduced Vocal Path
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Vocals) ' :
vocal_name = ' (Vocals) '
elif stemset_n == ' (Instrumental) ' :
vocal_name = ' (Instrumental) '
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
non_reduced_vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { vocal_name } _No_Reduction ' , )
else :
non_reduced_vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_2 } _ { vocal_name } _No_Reduction ' , )
if os . path . isfile ( non_reduced_vocal_path ) :
file_exists_n = ' there '
else :
file_exists_n = ' not_there '
if os . path . isfile ( vocal_path ) :
file_exists = ' there '
else :
file_exists = ' not_there '
2022-06-13 09:07:19 +02:00
if demucs_only == ' on ' :
data [ ' noisereduc_s ' ] == ' None '
2022-05-11 02:11:40 +02:00
if not data [ ' noisereduc_s ' ] == ' None ' :
c + = 1
2022-06-13 09:07:19 +02:00
if demucs_switch == ' off ' :
2022-05-11 02:11:40 +02:00
if data [ ' inst_only ' ] and not data [ ' voc_only ' ] :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Preparing to save { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-07-06 09:57:56 +02:00
sf . write ( non_reduced_vocal_path , sources [ c ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
widget_text . write ( base_text + ' Performing Noise Reduction... ' )
reduction_sen = float ( int ( data [ ' noisereduc_s ' ] ) / 10 )
subprocess . call ( " lib_v5 \\ sox \\ sox.exe " + ' " ' +
f " { str ( non_reduced_vocal_path ) } " + ' " " ' + f " { str ( vocal_path ) } " + ' " ' +
2022-06-06 22:44:20 +02:00
" noisered lib_v5 \\ sox \\ " + noise_pro_set + " .prof " + f " { reduction_sen } " ,
2022-05-11 02:11:40 +02:00
shell = True , stdout = subprocess . PIPE ,
stdin = subprocess . PIPE , stderr = subprocess . PIPE )
widget_text . write ( ' Done! \n ' )
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
else :
if data [ ' inst_only ' ] and not data [ ' voc_only ' ] :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Preparing to save { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-06-13 09:07:19 +02:00
if demucs_only == ' on ' :
if ' UVR ' in model_set_name :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ 1 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
widget_text . write ( ' Done! \n ' )
if ' extra ' in model_set_name :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ 3 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
widget_text . write ( ' Done! \n ' )
else :
2022-07-06 09:57:56 +02:00
sf . write ( non_reduced_vocal_path , sources [ 3 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
widget_text . write ( base_text + ' Performing Noise Reduction... ' )
reduction_sen = float ( data [ ' noisereduc_s ' ] ) / 10
subprocess . call ( " lib_v5 \\ sox \\ sox.exe " + ' " ' +
f " { str ( non_reduced_vocal_path ) } " + ' " " ' + f " { str ( vocal_path ) } " + ' " ' +
" noisered lib_v5 \\ sox \\ " + noise_pro_set + " .prof " + f " { reduction_sen } " ,
shell = True , stdout = subprocess . PIPE ,
stdin = subprocess . PIPE , stderr = subprocess . PIPE )
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
widget_text . write ( ' Done! \n ' )
2022-05-11 02:11:40 +02:00
else :
c + = 1
2022-06-13 09:07:19 +02:00
if demucs_switch == ' off ' :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ c ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
else :
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-06-13 09:07:19 +02:00
if demucs_only == ' on ' :
if ' UVR ' in model_set_name :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ 1 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
if ' extra ' in model_set_name :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ 3 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
else :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ 3 ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
if data [ ' voc_only ' ] and not data [ ' inst_only ' ] :
pass
else :
finalfiles = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : [ str ( music_file ) , vocal_path ] ,
}
]
2022-07-26 07:27:05 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
for i , e in tqdm ( enumerate ( finalfiles ) ) :
wave , specs = { } , { }
mp = ModelParameters ( e [ ' model_params ' ] )
for i in range ( len ( e [ ' files ' ] ) ) :
spec = { }
for d in range ( len ( mp . param [ ' band ' ] ) , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == len ( mp . param [ ' band ' ] ) : # high-end band
wave [ d ] , _ = librosa . load (
e [ ' files ' ] [ i ] , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if len ( wave [ d ] . shape ) == 1 : # mono to stereo
wave [ d ] = np . array ( [ wave [ d ] , wave [ d ] ] )
else : # lower bands
wave [ d ] = librosa . resample ( wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
spec [ d ] = spec_utils . wave_to_spectrogram ( wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] , mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
specs [ i ] = spec_utils . combine_spectrograms ( spec , mp )
del wave
ln = min ( [ specs [ 0 ] . shape [ 2 ] , specs [ 1 ] . shape [ 2 ] ] )
specs [ 0 ] = specs [ 0 ] [ : , : , : ln ]
specs [ 1 ] = specs [ 1 ] [ : , : , : ln ]
X_mag = np . abs ( specs [ 0 ] )
y_mag = np . abs ( specs [ 1 ] )
max_mag = np . where ( X_mag > = y_mag , X_mag , y_mag )
v_spec = specs [ 1 ] - max_mag * np . exp ( 1. j * np . angle ( specs [ 0 ] ) )
update_progress ( * * progress_kwargs ,
2022-05-23 04:47:47 +02:00
step = ( 0.95 ) )
2022-07-06 09:57:56 +02:00
sf . write ( Instrumental_path , normalization_set ( spec_utils . cmb_spectrogram_to_wave ( - v_spec , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
if data [ ' inst_only ' ] :
if file_exists == ' there ' :
pass
else :
try :
os . remove ( vocal_path )
except :
pass
widget_text . write ( ' Done! \n ' )
if data [ ' noisereduc_s ' ] == ' None ' :
pass
elif data [ ' inst_only ' ] :
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + ' Completed Separation! \n \n ' )
2022-05-11 02:11:40 +02:00
def demix ( self , mix ) :
# 1 = demucs only
# 0 = onnx only
if data [ ' chunks ' ] == ' Full ' :
chunk_set = 0
else :
chunk_set = data [ ' chunks ' ]
if data [ ' chunks ' ] == ' Auto ' :
if data [ ' gpu ' ] == 0 :
try :
gpu_mem = round ( torch . cuda . get_device_properties ( 0 ) . total_memory / 1.074e+9 )
except :
widget_text . write ( base_text + ' NVIDIA GPU Required for conversion! \n ' )
2022-05-31 21:17:32 +02:00
if int ( gpu_mem ) < = int ( 6 ) :
2022-05-11 02:11:40 +02:00
chunk_set = int ( 5 )
widget_text . write ( base_text + ' Chunk size auto-set to 5... \n ' )
2022-05-31 21:17:32 +02:00
if gpu_mem in [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ] :
chunk_set = int ( 10 )
widget_text . write ( base_text + ' Chunk size auto-set to 10... \n ' )
if int ( gpu_mem ) > = int ( 16 ) :
2022-05-11 02:11:40 +02:00
chunk_set = int ( 40 )
widget_text . write ( base_text + ' Chunk size auto-set to 40... \n ' )
if data [ ' gpu ' ] == - 1 :
sys_mem = psutil . virtual_memory ( ) . total >> 30
if int ( sys_mem ) < = int ( 4 ) :
chunk_set = int ( 1 )
widget_text . write ( base_text + ' Chunk size auto-set to 1... \n ' )
if sys_mem in [ 5 , 6 , 7 , 8 ] :
chunk_set = int ( 10 )
widget_text . write ( base_text + ' Chunk size auto-set to 10... \n ' )
if sys_mem in [ 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ] :
chunk_set = int ( 25 )
widget_text . write ( base_text + ' Chunk size auto-set to 25... \n ' )
if int ( sys_mem ) > = int ( 17 ) :
chunk_set = int ( 60 )
widget_text . write ( base_text + ' Chunk size auto-set to 60... \n ' )
elif data [ ' chunks ' ] == ' Full ' :
chunk_set = 0
widget_text . write ( base_text + " Chunk size set to full... \n " )
else :
chunk_set = int ( data [ ' chunks ' ] )
widget_text . write ( base_text + " Chunk size user-set to " f " { chunk_set } ... \n " )
samples = mix . shape [ - 1 ]
margin = margin_set
chunk_size = chunk_set * 44100
assert not margin == 0 , ' margin cannot be zero! '
if margin > chunk_size :
margin = chunk_size
b = np . array ( [ [ [ 0.5 ] ] , [ [ 0.5 ] ] , [ [ 0.7 ] ] , [ [ 0.9 ] ] ] )
segmented_mix = { }
if chunk_set == 0 or samples < chunk_size :
chunk_size = samples
counter = - 1
for skip in range ( 0 , samples , chunk_size ) :
counter + = 1
s_margin = 0 if counter == 0 else margin
end = min ( skip + chunk_size + margin , samples )
start = skip - s_margin
segmented_mix [ skip ] = mix [ : , start : end ] . copy ( )
if end == samples :
break
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
2022-06-13 09:07:19 +02:00
if demucs_switch == ' off ' :
2022-05-11 02:11:40 +02:00
sources = self . demix_base ( segmented_mix , margin_size = margin )
2022-06-13 09:07:19 +02:00
elif demucs_only == ' on ' :
2022-07-23 09:56:57 +02:00
if ' tasnet.th ' in demucs_model_set or ' tasnet_extra.th ' in demucs_model_set or \
' demucs.th ' in demucs_model_set or \
' demucs_extra.th ' in demucs_model_set or ' light.th ' in demucs_model_set or \
' light_extra.th ' in demucs_model_set or ' v1 ' in demucs_model_set or ' .gz ' in demucs_model_set :
sources = self . demix_demucs_v1 ( segmented_mix , margin_size = margin )
elif ' tasnet-beb46fac.th ' in demucs_model_set or ' tasnet_extra-df3777b2.th ' in demucs_model_set or \
' demucs48_hq-28a1282c.th ' in demucs_model_set or ' demucs-e07c671f.th ' in demucs_model_set or \
' demucs_extra-3646af93.th ' in demucs_model_set or ' demucs_unittest-09ebc15f.th ' in demucs_model_set or \
' v2 ' in demucs_model_set :
sources = self . demix_demucs_v2 ( segmented_mix , margin_size = margin )
else :
if split_mode == True :
sources = self . demix_demucs_split ( mix )
if split_mode == False :
sources = self . demix_demucs ( segmented_mix , margin_size = margin )
2022-05-11 02:11:40 +02:00
else : # both, apply spec effects
base_out = self . demix_base ( segmented_mix , margin_size = margin )
2022-07-23 09:56:57 +02:00
if ' tasnet.th ' in demucs_model_set or ' tasnet_extra.th ' in demucs_model_set or \
' demucs.th ' in demucs_model_set or \
' demucs_extra.th ' in demucs_model_set or ' light.th ' in demucs_model_set or \
' light_extra.th ' in demucs_model_set or ' v1 ' in demucs_model_set or ' .gz ' in demucs_model_set :
demucs_out = self . demix_demucs_v1 ( segmented_mix , margin_size = margin )
elif ' tasnet-beb46fac.th ' in demucs_model_set or ' tasnet_extra-df3777b2.th ' in demucs_model_set or \
' demucs48_hq-28a1282c.th ' in demucs_model_set or ' demucs-e07c671f.th ' in demucs_model_set or \
' demucs_extra-3646af93.th ' in demucs_model_set or ' demucs_unittest-09ebc15f.th ' in demucs_model_set or \
' v2 ' in demucs_model_set :
demucs_out = self . demix_demucs_v2 ( segmented_mix , margin_size = margin )
else :
if split_mode == True :
demucs_out = self . demix_demucs_split ( mix )
if split_mode == False :
demucs_out = self . demix_demucs ( segmented_mix , margin_size = margin )
2022-05-11 02:11:40 +02:00
nan_count = np . count_nonzero ( np . isnan ( demucs_out ) ) + np . count_nonzero ( np . isnan ( base_out ) )
if nan_count > 0 :
print ( ' Warning: there are {} nan values in the array(s). ' . format ( nan_count ) )
demucs_out , base_out = np . nan_to_num ( demucs_out ) , np . nan_to_num ( base_out )
sources = { }
2022-06-13 09:07:19 +02:00
if ' UVR ' in demucs_model_set :
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Instrumental) ' :
sources [ 3 ] = ( spec_effects ( wave = [ demucs_out [ 0 ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
value = b [ 3 ] ) * float ( compensate ) ) # compensation
else :
sources [ 3 ] = ( spec_effects ( wave = [ demucs_out [ 1 ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
value = b [ 3 ] ) * float ( compensate ) ) # compensation
2022-06-13 09:07:19 +02:00
else :
sources [ 3 ] = ( spec_effects ( wave = [ demucs_out [ 3 ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
2022-07-04 03:18:27 +02:00
value = b [ 3 ] ) * float ( compensate ) ) # compensation
2022-06-13 09:07:19 +02:00
2022-07-06 09:57:56 +02:00
if demucs_switch == ' off ' :
return sources * float ( compensate )
else :
return sources
2022-05-11 02:11:40 +02:00
def demix_base ( self , mixes , margin_size ) :
chunked_sources = [ ]
onnxitera = len ( mixes )
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text . write ( base_text + " Running ONNX Inference... \n " )
widget_text . write ( base_text + " Processing " f " { onnxitera } slices... " )
print ( ' Running ONNX Inference... ' )
for mix in mixes :
gui_progress_bar_onnx + = 1
2022-06-13 09:07:19 +02:00
if demucs_switch == ' on ' :
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.1 + ( 0.5 / onnxitera_calc * gui_progress_bar_onnx ) ) )
else :
update_progress ( * * progress_kwargs ,
step = ( 0.1 + ( 0.9 / onnxitera * gui_progress_bar_onnx ) ) )
cmix = mixes [ mix ]
sources = [ ]
n_sample = cmix . shape [ 1 ]
mod = 0
for model in self . models :
mod + = 1
trim = model . n_fft / / 2
gen_size = model . chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np . concatenate ( ( np . zeros ( ( 2 , trim ) ) , cmix , np . zeros ( ( 2 , pad ) ) , np . zeros ( ( 2 , trim ) ) ) , 1 )
mix_waves = [ ]
i = 0
while i < n_sample + pad :
waves = np . array ( mix_p [ : , i : i + model . chunk_size ] )
mix_waves . append ( waves )
i + = gen_size
mix_waves = torch . tensor ( mix_waves , dtype = torch . float32 ) . to ( cpu )
with torch . no_grad ( ) :
_ort = self . onnx_models [ mod ]
spek = model . stft ( mix_waves )
tar_waves = model . istft ( torch . tensor ( _ort . run ( None , { ' input ' : spek . cpu ( ) . numpy ( ) } ) [ 0 ] ) ) #.cpu()
tar_signal = tar_waves [ : , : , trim : - trim ] . transpose ( 0 , 1 ) . reshape ( 2 , - 1 ) . numpy ( ) [ : , : - pad ]
start = 0 if mix == 0 else margin_size
end = None if mix == list ( mixes . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
sources . append ( tar_signal [ : , start : end ] )
chunked_sources . append ( sources )
_sources = np . concatenate ( chunked_sources , axis = - 1 )
del self . onnx_models
widget_text . write ( ' Done! \n ' )
return _sources
def demix_demucs ( self , mix , margin_size ) :
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-05-11 02:11:40 +02:00
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
2022-06-13 09:07:19 +02:00
widget_text . write ( base_text + " Split Mode is off. (Chunks enabled for Demucs Model) \n " )
2022-05-11 02:11:40 +02:00
widget_text . write ( base_text + " Running Demucs Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
2022-06-13 09:07:19 +02:00
print ( ' Running Demucs Inference... ' )
2022-05-11 02:11:40 +02:00
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
2022-06-13 09:07:19 +02:00
sources = apply_model ( self . demucs , cmix [ None ] , split = split_mode , device = device , overlap = overlap_set , shifts = shift_set , progress = False ) [ 0 ]
2022-05-11 02:11:40 +02:00
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
return sources
2022-06-13 09:07:19 +02:00
def demix_demucs_split ( self , mix ) :
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-06-13 09:07:19 +02:00
widget_text . write ( base_text + " Split Mode is on. (Chunks disabled for Demucs Model) \n " )
widget_text . write ( base_text + " Running Demucs Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
mix = torch . tensor ( mix , dtype = torch . float32 )
ref = mix . mean ( 0 )
mix = ( mix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model ( self . demucs , mix [ None ] , split = split_mode , device = device , overlap = overlap_set , shifts = shift_set , progress = False ) [ 0 ]
widget_text . write ( ' Done! \n ' )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
return sources
2022-07-23 09:56:57 +02:00
def demix_demucs_v2 ( self , mix , margin_size ) :
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text . write ( base_text + " Running Demucs v2 Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model_v2 ( self . demucs , cmix . to ( device ) , split = split_mode , overlap = overlap_set , shifts = shift_set )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
return sources
def demix_demucs_v1 ( self , mix , margin_size ) :
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text . write ( base_text + " Running Demucs v1 Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model_v1 ( self . demucs , cmix . to ( device ) , split = split_mode , shifts = shift_set )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
return sources
2022-05-11 02:11:40 +02:00
def update_progress ( progress_var , total_files , file_num , step : float = 1 ) :
""" Calculate the progress for the progress widget in the GUI """
base = ( 100 / total_files )
progress = base * ( file_num - 1 )
progress + = base * step
progress_var . set ( progress )
def get_baseText ( total_files , file_num ) :
""" Create the base text for the command widget """
text = ' File {file_num} / {total_files} ' . format ( file_num = file_num ,
total_files = total_files )
return text
warnings . filterwarnings ( " ignore " )
cpu = torch . device ( ' cpu ' )
device = torch . device ( ' cuda:0 ' if torch . cuda . is_available ( ) else ' cpu ' )
def hide_opt ( ) :
with open ( os . devnull , " w " ) as devnull :
old_stdout = sys . stdout
sys . stdout = devnull
try :
yield
finally :
sys . stdout = old_stdout
class VocalRemover ( object ) :
def __init__ ( self , data , text_widget : tk . Text ) :
self . data = data
self . text_widget = text_widget
self . models = defaultdict ( lambda : None )
self . devices = defaultdict ( lambda : None )
# self.offset = model.offset
def update_progress ( progress_var , total_files , file_num , step : float = 1 ) :
""" Calculate the progress for the progress widget in the GUI """
base = ( 100 / total_files )
progress = base * ( file_num - 1 )
progress + = base * step
progress_var . set ( progress )
def get_baseText ( total_files , file_num ) :
""" Create the base text for the command widget """
text = ' File {file_num} / {total_files} ' . format ( file_num = file_num ,
total_files = total_files )
return text
def determineModelFolderName ( ) :
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ' '
if not data [ ' modelFolder ' ] :
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os . path . isfile ( data [ ' instrumentalModel ' ] ) :
modelFolderName + = os . path . splitext ( os . path . basename ( data [ ' instrumentalModel ' ] ) ) [ 0 ]
if modelFolderName :
modelFolderName = ' / ' + modelFolderName
return modelFolderName
class VocalRemover ( object ) :
def __init__ ( self , data , text_widget : tk . Text ) :
self . data = data
self . text_widget = text_widget
# self.offset = model.offset
data = {
2022-07-23 09:56:57 +02:00
' agg ' : 10 ,
' algo ' : ' Instrumentals (Min Spec) ' ,
' appendensem ' : False ,
' autocompensate ' : True ,
' chunks ' : ' auto ' ,
' compensate ' : 1.03597672895 ,
' demucs_only ' : False ,
' demucsmodel ' : False ,
' DemucsModel_MDX ' : ' UVR_Demucs_Model_1 ' ,
' ensChoose ' : ' Basic VR Ensemble ' ,
2022-05-11 02:11:40 +02:00
' export_path ' : None ,
2022-07-23 09:56:57 +02:00
' gpu ' : - 1 ,
' high_end_process ' : ' mirroring ' ,
' input_paths ' : None ,
' inst_only ' : False ,
' instrumentalModel ' : None ,
' margin ' : 44100 ,
' mdx_ensem ' : ' MDX-Net: UVR-MDX-NET 1 ' ,
' mdx_ensem_b ' : ' No Model ' ,
' mdx_only_ensem_a ' : ' MDX-Net: UVR-MDX-NET Main ' ,
' mdx_only_ensem_b ' : ' MDX-Net: UVR-MDX-NET 1 ' ,
' mdx_only_ensem_c ' : ' No Model ' ,
' mdx_only_ensem_d ' : ' No Model ' ,
' mdx_only_ensem_e ' : ' No Model ' ,
' mixing ' : ' Default ' ,
' mp3bit ' : ' 320k ' ,
' noise_pro_select ' : ' Auto Select ' ,
' noisereduc_s ' : 3 ,
' non_red ' : False ,
' normalize ' : False ,
' output_image ' : True ,
' overlap ' : 0.5 ,
' postprocess ' : True ,
2022-05-11 02:11:40 +02:00
' saveFormat ' : ' wav ' ,
2022-07-23 09:56:57 +02:00
' shifts ' : 0 ,
' split_mode ' : False ,
' tta ' : True ,
' useModel ' : None ,
' voc_only ' : False ,
2022-05-23 04:47:47 +02:00
' vr_ensem ' : ' 2_HP-UVR ' ,
' vr_ensem_a ' : ' 1_HP-UVR ' ,
' vr_ensem_b ' : ' 2_HP-UVR ' ,
' vr_ensem_c ' : ' No Model ' ,
' vr_ensem_d ' : ' No Model ' ,
' vr_ensem_e ' : ' No Model ' ,
' vr_ensem_mdx_a ' : ' No Model ' ,
' vr_ensem_mdx_b ' : ' No Model ' ,
' vr_ensem_mdx_c ' : ' No Model ' ,
2022-07-23 09:56:57 +02:00
' vr_multi_USER_model_param_1 ' : ' Auto ' ,
' vr_multi_USER_model_param_2 ' : ' Auto ' ,
' vr_multi_USER_model_param_3 ' : ' Auto ' ,
' vr_multi_USER_model_param_4 ' : ' Auto ' ,
' vr_basic_USER_model_param_1 ' : ' Auto ' ,
' vr_basic_USER_model_param_2 ' : ' Auto ' ,
' vr_basic_USER_model_param_3 ' : ' Auto ' ,
' vr_basic_USER_model_param_4 ' : ' Auto ' ,
' vr_basic_USER_model_param_5 ' : ' Auto ' ,
2022-07-06 09:57:56 +02:00
' wavtype ' : ' PCM_16 ' ,
2022-07-23 09:56:57 +02:00
' window_size ' : 512
2022-05-11 02:11:40 +02:00
}
default_window_size = data [ ' window_size ' ]
default_agg = data [ ' agg ' ]
default_chunks = data [ ' chunks ' ]
default_noisereduc_s = data [ ' noisereduc_s ' ]
def update_progress ( progress_var , total_files , file_num , step : float = 1 ) :
""" Calculate the progress for the progress widget in the GUI """
base = ( 100 / total_files )
progress = base * ( file_num - 1 )
progress + = base * step
progress_var . set ( progress )
def get_baseText ( total_files , file_num ) :
""" Create the base text for the command widget """
text = ' File {file_num} / {total_files} ' . format ( file_num = file_num ,
total_files = total_files )
return text
def main ( window : tk . Wm , text_widget : tk . Text , button_widget : tk . Button , progress_var : tk . Variable ,
* * kwargs : dict ) :
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global default_noisereduc_s
global base_name
global progress_kwargs
global base_text
2022-06-02 02:00:43 +02:00
global modeltype
2022-05-11 02:11:40 +02:00
global model_set
global model_set_name
global ModelName_2
2022-07-04 03:18:27 +02:00
global compensate
global autocompensate
2022-06-13 09:07:19 +02:00
global demucs_model_set
2022-06-03 11:08:37 +02:00
global channel_set
global margin_set
global overlap_set
global shift_set
2022-06-06 22:44:20 +02:00
global noise_pro_set
2022-06-03 11:08:37 +02:00
global n_fft_scale_set
global dim_f_set
2022-06-13 09:07:19 +02:00
global split_mode
global demucs_switch
global demucs_only
2022-07-06 09:57:56 +02:00
global wav_type_set
global flac_type_set
global mp3_bit_set
2022-07-23 09:56:57 +02:00
global model_hash
global stime
global stemset_n
global source_val
global widget_button
2022-07-06 09:57:56 +02:00
wav_type_set = data [ ' wavtype ' ]
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
# Update default settings
default_chunks = data [ ' chunks ' ]
default_noisereduc_s = data [ ' noisereduc_s ' ]
2022-07-04 03:18:27 +02:00
autocompensate = data [ ' autocompensate ' ]
2022-05-11 02:11:40 +02:00
widget_text = text_widget
gui_progress_bar = progress_var
2022-07-23 09:56:57 +02:00
widget_button = button_widget
2022-05-11 23:05:05 +02:00
#Error Handling
2022-05-11 02:11:40 +02:00
onnxmissing = " [ONNXRuntimeError] : 3 : NO_SUCHFILE "
2022-05-11 23:05:05 +02:00
onnxmemerror = " onnxruntime::CudaCall CUDA failure 2: out of memory "
2022-05-23 04:47:47 +02:00
onnxmemerror2 = " onnxruntime::BFCArena::AllocateRawInternal "
systemmemerr = " DefaultCPUAllocator: not enough memory "
2022-05-11 02:11:40 +02:00
runtimeerr = " CUDNN error executing cudnnSetTensorNdDescriptor "
cuda_err = " CUDA out of memory "
2022-05-23 04:47:47 +02:00
enex_err = " local variable \' enseExport \' referenced before assignment "
2022-05-11 02:11:40 +02:00
mod_err = " ModuleNotFoundError "
file_err = " FileNotFoundError "
ffmp_err = """ audioread \ __init__.py " , line 116, in audio_open """
sf_write_err = " sf.write "
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' No errors to report at this time. ' + f ' \n \n Last Process Method Used: Ensemble Mode ' +
f ' \n Last Conversion Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
global nn_arch_sizes
global nn_architecture
nn_arch_sizes = [
31191 , # default
2022-07-23 09:56:57 +02:00
33966 , 123821 , 123812 , 129605 , 537238 , 537227 # custom
2022-05-11 02:11:40 +02:00
]
def save_files ( wav_instrument , wav_vocals ) :
""" Save output music files """
vocal_name = ' (Vocals) '
instrumental_name = ' (Instrumental) '
save_path = os . path . dirname ( base_name )
# Swap names if vocal model
VModel = " Vocal "
if VModel in model_name :
# Reverse names
vocal_name , instrumental_name = instrumental_name , vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
sf . write ( f ' temp.wav ' ,
2022-07-06 09:57:56 +02:00
normalization_set ( wav_instrument ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
# -Save files-
# Instrumental
if instrumental_name is not None :
instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_1 } _ { instrumental_name } ' ,
)
if VModel in ModelName_1 and data [ ' voc_only ' ] :
sf . write ( instrumental_path ,
2022-07-06 09:57:56 +02:00
normalization_set ( wav_instrument ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
elif VModel in ModelName_1 and data [ ' inst_only ' ] :
pass
elif data [ ' voc_only ' ] :
pass
else :
sf . write ( instrumental_path ,
2022-07-06 09:57:56 +02:00
normalization_set ( wav_instrument ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
# Vocal
if vocal_name is not None :
vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( base_name ) } _ { ModelName_1 } _ { vocal_name } ' ,
)
if VModel in ModelName_1 and data [ ' inst_only ' ] :
sf . write ( vocal_path ,
2022-07-06 09:57:56 +02:00
normalization_set ( wav_vocals ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
elif VModel in ModelName_1 and data [ ' voc_only ' ] :
pass
elif data [ ' inst_only ' ] :
pass
else :
sf . write ( vocal_path ,
2022-07-06 09:57:56 +02:00
normalization_set ( wav_vocals ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
data . update ( kwargs )
2022-07-23 09:56:57 +02:00
if data [ ' DemucsModel_MDX ' ] == " Tasnet v1 " :
demucs_model_set_name = ' tasnet.th '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet_extra v1 " :
demucs_model_set_name = ' tasnet_extra.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v1 " :
demucs_model_set_name = ' demucs.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v1.gz " :
demucs_model_set_name = ' demucs.th.gz '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v1 " :
demucs_model_set_name = ' demucs_extra.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v1.gz " :
demucs_model_set_name = ' demucs_extra.th.gz '
elif data [ ' DemucsModel_MDX ' ] == " Light v1 " :
demucs_model_set_name = ' light.th '
elif data [ ' DemucsModel_MDX ' ] == " Light v1.gz " :
demucs_model_set_name = ' light.th.gz '
elif data [ ' DemucsModel_MDX ' ] == " Light_extra v1 " :
demucs_model_set_name = ' light_extra.th '
elif data [ ' DemucsModel_MDX ' ] == " Light_extra v1.gz " :
demucs_model_set_name = ' light_extra.th.gz '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet v2 " :
demucs_model_set_name = ' tasnet-beb46fac.th '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet_extra v2 " :
demucs_model_set_name = ' tasnet_extra-df3777b2.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs48_hq v2 " :
demucs_model_set_name = ' demucs48_hq-28a1282c.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v2 " :
demucs_model_set_name = ' demucs-e07c671f.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v2 " :
demucs_model_set_name = ' demucs_extra-3646af93.th '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_unittest v2 " :
demucs_model_set_name = ' demucs_unittest-09ebc15f.th '
elif ' .ckpt ' in data [ ' DemucsModel_MDX ' ] and ' v2 ' in data [ ' DemucsModel_MDX ' ] :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
elif ' .ckpt ' in data [ ' DemucsModel_MDX ' ] and ' v1 ' in data [ ' DemucsModel_MDX ' ] :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
else :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
if data [ ' mdx_ensem ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_muilti_a = ' tasnet.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_muilti_a = ' tasnet_extra.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_muilti_a = ' demucs.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_muilti_a = ' demucs_extra.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Light v1 " :
demucs_model_set_name_muilti_a = ' light.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_muilti_a = ' light_extra.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_muilti_a = ' demucs.th.gz '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_muilti_a = ' demucs_extra.th.gz '
elif data [ ' mdx_ensem ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_muilti_a = ' light.th.gz '
elif data [ ' mdx_ensem ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_muilti_a = ' light_extra.th.gz '
elif data [ ' mdx_ensem ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_muilti_a = ' tasnet-beb46fac.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_muilti_a = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_muilti_a = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_muilti_a = ' demucs-e07c671f.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_muilti_a = ' demucs_extra-3646af93.th '
elif data [ ' mdx_ensem ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_muilti_a = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_ensem ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_muilti_a = ' mdx_extra '
elif data [ ' mdx_ensem ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_muilti_a = ' mdx_extra_q '
elif data [ ' mdx_ensem ' ] == " Demucs: mdx " :
demucs_model_set_name_muilti_a = ' mdx '
elif data [ ' mdx_ensem ' ] == " Demucs: mdx_q " :
demucs_model_set_name_muilti_a = ' mdx_q '
elif data [ ' mdx_ensem ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_muilti_a = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_ensem ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_muilti_a = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_ensem ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_muilti_a = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_muilti_a = data [ ' mdx_ensem ' ]
if data [ ' mdx_ensem_b ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_muilti_b = ' tasnet.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_muilti_b = ' tasnet_extra.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_muilti_b = ' demucs.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_muilti_b = ' demucs_extra.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Light v1 " :
demucs_model_set_name_muilti_b = ' light.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_muilti_b = ' light_extra.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_muilti_b = ' demucs.th.gz '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_muilti_b = ' demucs_extra.th.gz '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_muilti_b = ' light.th.gz '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_muilti_b = ' light_extra.th.gz '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_muilti_b = ' tasnet-beb46fac.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_muilti_b = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_muilti_b = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_muilti_b = ' demucs-e07c671f.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_muilti_b = ' demucs_extra-3646af93.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_muilti_b = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_ensem_b ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_muilti_b = ' mdx_extra '
elif data [ ' mdx_ensem_b ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_muilti_b = ' mdx_extra_q '
elif data [ ' mdx_ensem_b ' ] == " Demucs: mdx " :
demucs_model_set_name_muilti_b = ' mdx '
elif data [ ' mdx_ensem_b ' ] == " Demucs: mdx_q " :
demucs_model_set_name_muilti_b = ' mdx_q '
elif data [ ' mdx_ensem_b ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_muilti_b = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_ensem_b ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_muilti_b = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_ensem_b ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_muilti_b = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_muilti_b = data [ ' mdx_ensem_b ' ]
if data [ ' mdx_only_ensem_a ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_a = ' tasnet.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_a = ' tasnet_extra.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_a = ' demucs.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_a = ' demucs_extra.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Light v1 " :
demucs_model_set_name_a = ' light.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_a = ' light_extra.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_a = ' demucs.th.gz '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_a = ' demucs_extra.th.gz '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_a = ' light.th.gz '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_a = ' light_extra.th.gz '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_a = ' tasnet-beb46fac.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_a = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_a = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_a = ' demucs-e07c671f.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_a = ' demucs_extra-3646af93.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_a = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_a = ' mdx_extra '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_a = ' mdx_extra_q '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: mdx " :
demucs_model_set_name_a = ' mdx '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: mdx_q " :
demucs_model_set_name_a = ' mdx_q '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_a = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_a = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_only_ensem_a ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_a = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_a = data [ ' mdx_only_ensem_a ' ]
if data [ ' mdx_only_ensem_b ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_b = ' tasnet.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_b = ' tasnet_extra.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_b = ' demucs.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_b = ' demucs_extra.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Light v1 " :
demucs_model_set_name_b = ' light.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_b = ' light_extra.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_b = ' demucs.th.gz '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_b = ' demucs_extra.th.gz '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_b = ' light.th.gz '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_b = ' light_extra.th.gz '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_b = ' tasnet-beb46fac.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_b = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_b = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_b = ' demucs-e07c671f.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_b = ' demucs_extra-3646af93.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_b = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_b = ' mdx_extra '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_b = ' mdx_extra_q '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: mdx " :
demucs_model_set_name_b = ' mdx '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: mdx_q " :
demucs_model_set_name_b = ' mdx_q '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_b = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_b = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_only_ensem_b ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_b = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_b = data [ ' mdx_only_ensem_b ' ]
if data [ ' mdx_only_ensem_c ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_c = ' tasnet.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_c = ' tasnet_extra.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_c = ' demucs.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_c = ' demucs_extra.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Light v1 " :
demucs_model_set_name_c = ' light.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_c = ' light_extra.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_c = ' demucs.th.gz '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_c = ' demucs_extra.th.gz '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_c = ' light.th.gz '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_c = ' light_extra.th.gz '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_c = ' tasnet-beb46fac.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_c = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_c = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_c = ' demucs-e07c671f.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_c = ' demucs_extra-3646af93.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_c = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_c = ' mdx_extra '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_c = ' mdx_extra_q '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: mdx " :
demucs_model_set_name_c = ' mdx '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: mdx_q " :
demucs_model_set_name_c = ' mdx_q '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_c = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_c = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_only_ensem_c ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_c = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_c = data [ ' mdx_only_ensem_c ' ]
if data [ ' mdx_only_ensem_d ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_d = ' tasnet.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_d = ' tasnet_extra.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_d = ' demucs.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_d = ' demucs_extra.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Light v1 " :
demucs_model_set_name_d = ' light.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_d = ' light_extra.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_d = ' demucs.th.gz '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_d = ' demucs_extra.th.gz '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_d = ' light.th.gz '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_d = ' light_extra.th.gz '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_d = ' tasnet-beb46fac.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_d = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_d = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_d = ' demucs-e07c671f.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_d = ' demucs_extra-3646af93.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_d = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_d = ' mdx_extra '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_d = ' mdx_extra_q '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: mdx " :
demucs_model_set_name_d = ' mdx '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: mdx_q " :
demucs_model_set_name_d = ' mdx_q '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_d = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_d = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_only_ensem_d ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_d = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_d = data [ ' mdx_only_ensem_d ' ]
if data [ ' mdx_only_ensem_e ' ] == " Demucs: Tasnet v1 " :
demucs_model_set_name_e = ' tasnet.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Tasnet_extra v1 " :
demucs_model_set_name_e = ' tasnet_extra.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs v1 " :
demucs_model_set_name_e = ' demucs.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs_extra v1 " :
demucs_model_set_name_e = ' demucs_extra.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Light v1 " :
demucs_model_set_name_e = ' light.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Light_extra v1 " :
demucs_model_set_name_e = ' light_extra.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs v1.gz " :
demucs_model_set_name_e = ' demucs.th.gz '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs_extra v1.gz " :
demucs_model_set_name_e = ' demucs_extra.th.gz '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Light v1.gz " :
demucs_model_set_name_e = ' light.th.gz '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Light_extra v1.gz " :
demucs_model_set_name_e = ' light_extra.th.gz '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Tasnet v2 " :
demucs_model_set_name_e = ' tasnet-beb46fac.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Tasnet_extra v2 " :
demucs_model_set_name_e = ' tasnet_extra-df3777b2.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs48_hq v2 " :
demucs_model_set_name_e = ' demucs48_hq-28a1282c.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs v2 " :
demucs_model_set_name_e = ' demucs-e07c671f.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs_extra v2 " :
demucs_model_set_name_e = ' demucs_extra-3646af93.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: Demucs_unittest v2 " :
demucs_model_set_name_e = ' demucs_unittest-09ebc15f.th '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: mdx_extra " :
demucs_model_set_name_e = ' mdx_extra '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: mdx_extra_q " :
demucs_model_set_name_e = ' mdx_extra_q '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: mdx " :
demucs_model_set_name_e = ' mdx '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: mdx_q " :
demucs_model_set_name_e = ' mdx_q '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: UVR_Demucs_Model_1 " :
demucs_model_set_name_e = ' UVR_Demucs_Model_1 '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: UVR_Demucs_Model_2 " :
demucs_model_set_name_e = ' UVR_Demucs_Model_2 '
elif data [ ' mdx_only_ensem_e ' ] == " Demucs: UVR_Demucs_Model_Bag " :
demucs_model_set_name_e = ' UVR_Demucs_Model_Bag '
else :
demucs_model_set_name_e = data [ ' mdx_only_ensem_e ' ]
2022-05-11 02:11:40 +02:00
# Update default settings
global default_window_size
global default_agg
2022-07-06 09:57:56 +02:00
global normalization_set
2022-05-11 02:11:40 +02:00
default_window_size = data [ ' window_size ' ]
default_agg = data [ ' agg ' ]
2022-07-06 09:57:56 +02:00
if data [ ' wavtype ' ] == ' 32-bit Float ' :
wav_type_set = ' FLOAT '
elif data [ ' wavtype ' ] == ' 64-bit Float ' :
wav_type_set = ' DOUBLE '
else :
wav_type_set = data [ ' wavtype ' ]
flac_type_set = data [ ' flactype ' ]
mp3_bit_set = data [ ' mp3bit ' ]
if data [ ' normalize ' ] == True :
normalization_set = spec_utils . normalize
print ( ' normalization on ' )
else :
normalization_set = spec_utils . nonormalize
print ( ' normalization off ' )
2022-05-11 02:11:40 +02:00
stime = time . perf_counter ( )
progress_var . set ( 0 )
text_widget . clear ( )
button_widget . configure ( state = tk . DISABLED ) # Disable Button
if os . path . exists ( ' models/Main_Models/7_HP2-UVR.pth ' ) \
or os . path . exists ( ' models/Main_Models/8_HP2-UVR.pth ' ) \
or os . path . exists ( ' models/Main_Models/9_HP2-UVR.pth ' ) :
hp2_ens = ' on '
else :
hp2_ens = ' off '
2022-05-23 04:47:47 +02:00
timestampnum = round ( datetime . utcnow ( ) . timestamp ( ) )
randomnum = randrange ( 100000 , 1000000 )
2022-07-23 09:56:57 +02:00
#print('Do all of the HP models exist? ' + hp2_ens)
2022-05-11 02:11:40 +02:00
# Separation Preperation
try : #Ensemble Dictionary
2022-06-13 09:07:19 +02:00
overlap_set = float ( data [ ' overlap ' ] )
channel_set = int ( data [ ' channel ' ] )
margin_set = int ( data [ ' margin ' ] )
shift_set = int ( data [ ' shifts ' ] )
2022-07-23 09:56:57 +02:00
demucs_model_set = demucs_model_set_name
2022-06-13 09:07:19 +02:00
split_mode = data [ ' split_mode ' ]
2022-07-06 09:57:56 +02:00
if data [ ' wavtype ' ] == ' 64-bit Float ' :
if data [ ' saveFormat ' ] == ' Flac ' :
text_widget . write ( ' Please select \" WAV \" as your save format to use 64-bit Float. \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if data [ ' wavtype ' ] == ' 64-bit Float ' :
if data [ ' saveFormat ' ] == ' Mp3 ' :
text_widget . write ( ' Please select \" WAV \" as your save format to use 64-bit Float. \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-06-13 09:07:19 +02:00
if not data [ ' ensChoose ' ] == ' Manual Ensemble ' :
2022-05-23 04:47:47 +02:00
2022-07-23 09:56:57 +02:00
##### Basic VR Ensemble #####
2022-05-23 04:47:47 +02:00
#1st Model
2022-07-23 09:56:57 +02:00
vr_ensem_a_name = data [ ' vr_ensem_a ' ]
vr_ensem_a = f ' models/Main_Models/ { vr_ensem_a_name } .pth '
vr_param_ens_a = data [ ' vr_basic_USER_model_param_1 ' ]
2022-05-23 04:47:47 +02:00
#2nd Model
2022-07-23 09:56:57 +02:00
vr_ensem_b_name = data [ ' vr_ensem_b ' ]
vr_ensem_b = f ' models/Main_Models/ { vr_ensem_b_name } .pth '
vr_param_ens_b = data [ ' vr_basic_USER_model_param_2 ' ]
2022-05-23 04:47:47 +02:00
#3rd Model
2022-07-23 09:56:57 +02:00
vr_ensem_c_name = data [ ' vr_ensem_c ' ]
vr_ensem_c = f ' models/Main_Models/ { vr_ensem_c_name } .pth '
vr_param_ens_c = data [ ' vr_basic_USER_model_param_3 ' ]
2022-05-23 04:47:47 +02:00
#4th Model
2022-07-23 09:56:57 +02:00
vr_ensem_d_name = data [ ' vr_ensem_d ' ]
vr_ensem_d = f ' models/Main_Models/ { vr_ensem_d_name } .pth '
vr_param_ens_d = data [ ' vr_basic_USER_model_param_4 ' ]
2022-05-23 04:47:47 +02:00
# 5th Model
2022-07-23 09:56:57 +02:00
vr_ensem_e_name = data [ ' vr_ensem_e ' ]
vr_ensem_e = f ' models/Main_Models/ { vr_ensem_e_name } .pth '
vr_param_ens_e = data [ ' vr_basic_USER_model_param_5 ' ]
2022-05-23 04:47:47 +02:00
if data [ ' vr_ensem_c ' ] == ' No Model ' and data [ ' vr_ensem_d ' ] == ' No Model ' and data [ ' vr_ensem_e ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/2 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/2 '
}
]
elif data [ ' vr_ensem_c ' ] == ' No Model ' and data [ ' vr_ensem_d ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/3 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/3 '
} ,
{
' model_name ' : vr_ensem_e_name ,
' model_name_c ' : vr_ensem_e_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_e ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_e ,
' loop_name ' : ' Ensemble Mode - Model 3/3 '
}
]
elif data [ ' vr_ensem_c ' ] == ' No Model ' and data [ ' vr_ensem_e ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/3 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/3 '
} ,
{
' model_name ' : vr_ensem_d_name ,
' model_name_c ' : vr_ensem_d_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_d ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_d ,
' loop_name ' : ' Ensemble Mode - Model 3/3 '
}
]
elif data [ ' vr_ensem_d ' ] == ' No Model ' and data [ ' vr_ensem_e ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/3 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/3 '
} ,
{
' model_name ' : vr_ensem_c_name ,
' model_name_c ' : vr_ensem_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_c ,
' loop_name ' : ' Ensemble Mode - Model 3/3 '
}
]
elif data [ ' vr_ensem_d ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/4 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/4 '
} ,
{
' model_name ' : vr_ensem_c_name ,
' model_name_c ' : vr_ensem_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_c ,
' loop_name ' : ' Ensemble Mode - Model 3/4 '
} ,
{
' model_name ' : vr_ensem_e_name ,
' model_name_c ' : vr_ensem_e_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_e ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_e ,
' loop_name ' : ' Ensemble Mode - Model 4/4 '
}
]
elif data [ ' vr_ensem_c ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/4 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/4 '
} ,
{
' model_name ' : vr_ensem_d_name ,
' model_name_c ' : vr_ensem_d_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_d ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_d ,
' loop_name ' : ' Ensemble Mode - Model 3/4 '
} ,
{
' model_name ' : vr_ensem_e_name ,
' model_name_c ' : vr_ensem_e_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_e ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_e ,
' loop_name ' : ' Ensemble Mode - Model 4/4 '
}
]
elif data [ ' vr_ensem_e ' ] == ' No Model ' :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/4 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/4 '
} ,
{
' model_name ' : vr_ensem_c_name ,
' model_name_c ' : vr_ensem_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_c ,
' loop_name ' : ' Ensemble Mode - Model 3/4 '
} ,
{
' model_name ' : vr_ensem_d_name ,
' model_name_c ' : vr_ensem_d_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_d ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_d ,
' loop_name ' : ' Ensemble Mode - Model 4/4 '
}
]
else :
Basic_Ensem = [
{
' model_name ' : vr_ensem_a_name ,
' model_name_c ' : vr_ensem_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_a ,
' loop_name ' : ' Ensemble Mode - Model 1/5 '
} ,
{
' model_name ' : vr_ensem_b_name ,
' model_name_c ' : vr_ensem_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_b ,
' loop_name ' : ' Ensemble Mode - Model 2/5 '
} ,
{
' model_name ' : vr_ensem_c_name ,
' model_name_c ' : vr_ensem_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_c ,
' loop_name ' : ' Ensemble Mode - Model 3/5 '
} ,
{
' model_name ' : vr_ensem_d_name ,
' model_name_c ' : vr_ensem_d_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_d ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_d ,
' loop_name ' : ' Ensemble Mode - Model 4/5 '
} ,
{
' model_name ' : vr_ensem_e_name ,
' model_name_c ' : vr_ensem_e_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_e ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_e ,
' loop_name ' : ' Ensemble Mode - Model 5/5 '
}
]
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
##### Multi-AI Ensemble #####
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
#VR Model 1
2022-07-23 09:56:57 +02:00
vr_ensem_name = data [ ' vr_ensem ' ]
vr_ensem = f ' models/Main_Models/ { vr_ensem_name } .pth '
vr_param_ens_multi = data [ ' vr_multi_USER_model_param_1 ' ]
2022-05-23 04:47:47 +02:00
#VR Model 2
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_a_name = data [ ' vr_ensem_mdx_a ' ]
vr_ensem_mdx_a = f ' models/Main_Models/ { vr_ensem_mdx_a_name } .pth '
vr_param_ens_multi_a = data [ ' vr_multi_USER_model_param_2 ' ]
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
#VR Model 3
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_b_name = data [ ' vr_ensem_mdx_b ' ]
vr_ensem_mdx_b = f ' models/Main_Models/ { vr_ensem_mdx_b_name } .pth '
vr_param_ens_multi_b = data [ ' vr_multi_USER_model_param_3 ' ]
2022-05-23 04:47:47 +02:00
#VR Model 4
2022-07-23 09:56:57 +02:00
vr_ensem_mdx_c_name = data [ ' vr_ensem_mdx_c ' ]
vr_ensem_mdx_c = f ' models/Main_Models/ { vr_ensem_mdx_c_name } .pth '
vr_param_ens_multi_c = data [ ' vr_multi_USER_model_param_4 ' ]
2022-06-13 09:07:19 +02:00
2022-07-23 09:56:57 +02:00
#MDX-Net/Demucs Model 1
2022-07-04 03:18:27 +02:00
2022-07-23 09:56:57 +02:00
if ' MDX-Net: ' in data [ ' mdx_ensem ' ] :
mdx_model_run_mul_a = ' yes '
mdx_net_model_name = data [ ' mdx_ensem ' ]
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_ensem = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_ensem = ' UVR_MDXNET_1_9703 '
else :
mdx_ensem = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_ensem = ' UVR_MDXNET_2_9682 '
else :
mdx_ensem = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_ensem = ' UVR_MDXNET_3_9662 '
else :
mdx_ensem = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_ensem = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_ensem = ' UVR_MDXNET_Main '
2022-07-04 03:18:27 +02:00
else :
2022-07-23 09:56:57 +02:00
mdx_ensem = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_ensem ' ] :
mdx_model_run_mul_a = ' no '
mdx_ensem = demucs_model_set_name_muilti_a
if data [ ' mdx_ensem ' ] == ' No Model ' :
mdx_ensem = ' pass '
2022-07-26 07:27:05 +02:00
mdx_model_run_mul_a = ' pass '
2022-07-23 09:56:57 +02:00
#MDX-Net/Demucs Model 2
if ' MDX-Net: ' in data [ ' mdx_ensem_b ' ] :
mdx_model_run_mul_b = ' yes '
mdx_net_model_name = data [ ' mdx_ensem_b ' ]
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_ensem_b = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_ensem_b = ' UVR_MDXNET_1_9703 '
else :
mdx_ensem_b = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_ensem_b = ' UVR_MDXNET_2_9682 '
else :
mdx_ensem_b = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_ensem_b = ' UVR_MDXNET_3_9662 '
else :
mdx_ensem_b = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_ensem_b = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_ensem_b = ' UVR_MDXNET_Main '
2022-07-04 03:18:27 +02:00
else :
2022-07-23 09:56:57 +02:00
mdx_ensem_b = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_ensem_b ' ] :
mdx_model_run_mul_b = ' no '
mdx_ensem_b = demucs_model_set_name_muilti_b
2022-05-23 04:47:47 +02:00
if data [ ' mdx_ensem_b ' ] == ' No Model ' :
mdx_ensem_b = ' pass '
2022-07-23 09:56:57 +02:00
mdx_model_run_mul_b = ' pass '
2022-07-04 03:18:27 +02:00
2022-05-23 04:47:47 +02:00
if data [ ' vr_ensem ' ] == ' No Model ' and data [ ' vr_ensem_mdx_a ' ] == ' No Model ' and data [ ' vr_ensem_mdx_b ' ] == ' No Model ' and data [ ' vr_ensem_mdx_c ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_ensem } ' ,
} ,
{
' model_name ' : ' pass ' ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' model_param ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Last Model - { mdx_ensem_b } ' ,
}
]
elif data [ ' vr_ensem_mdx_a ' ] == ' No Model ' and data [ ' vr_ensem_mdx_b ' ] == ' No Model ' and data [ ' vr_ensem_mdx_c ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } ' ,
} ,
{
' model_name ' : ' pass ' ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' model_param ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_location ' : ' pass ' ,
' loop_name ' : ' Ensemble Mode - Last Model ' ,
}
]
elif data [ ' vr_ensem_mdx_a ' ] == ' No Model ' and data [ ' vr_ensem_mdx_b ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_c_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_c ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_c_name } '
}
]
elif data [ ' vr_ensem_mdx_a ' ] == ' No Model ' and data [ ' vr_ensem_mdx_c ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_b_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_b ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_b_name } '
} ,
]
elif data [ ' vr_ensem_mdx_b ' ] == ' No Model ' and data [ ' vr_ensem_mdx_c ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_a_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_a ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_a_name } '
}
]
elif data [ ' vr_ensem_mdx_a ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_b_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_b ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_b_name } '
} ,
{
' model_name ' : vr_ensem_mdx_c_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_c ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_c_name } '
}
]
elif data [ ' vr_ensem_mdx_b ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_a_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_a ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_a_name } '
} ,
{
' model_name ' : vr_ensem_mdx_c_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_c ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_c_name } '
}
]
elif data [ ' vr_ensem_mdx_c ' ] == ' No Model ' :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_a_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_a ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_a_name } '
} ,
{
' model_name ' : vr_ensem_mdx_b_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_b ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_b_name } '
}
]
else :
mdx_vr = [
{
' model_name ' : vr_ensem_name ,
' mdx_model_name ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_name } '
} ,
{
' model_name ' : vr_ensem_mdx_a_name ,
' mdx_model_name ' : ' pass ' ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : ' pass ' ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_a_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_a ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_a ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_a_name } '
} ,
{
' model_name ' : vr_ensem_mdx_b_name ,
' mdx_model_name ' : mdx_ensem_b ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_b ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_b_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_b ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_b ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_b_name } '
} ,
{
' model_name ' : vr_ensem_mdx_c_name ,
' mdx_model_name ' : mdx_ensem ,
2022-07-23 09:56:57 +02:00
' mdx_model_run ' : mdx_model_run_mul_a ,
2022-05-23 04:47:47 +02:00
' model_name_c ' : vr_ensem_mdx_c_name ,
2022-07-23 09:56:57 +02:00
' model_param ' : vr_param_ens_multi_c ,
2022-05-23 04:47:47 +02:00
' model_location ' : vr_ensem_mdx_c ,
' loop_name ' : f ' Ensemble Mode - Running Model - { vr_ensem_mdx_c_name } '
}
]
2022-07-23 09:56:57 +02:00
##### Basic MD Ensemble #####
#MDX-Net/Demucs Model 1
if ' MDX-Net: ' in data [ ' mdx_only_ensem_a ' ] :
mdx_model_run_a = ' yes '
mdx_net_model_name = str ( data [ ' mdx_only_ensem_a ' ] )
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#print('mdx_net_model_name ', mdx_net_model_name)
#mdx_only_ensem_a = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_only_ensem_a = ' UVR_MDXNET_1_9703 '
else :
mdx_only_ensem_a = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_only_ensem_a = ' UVR_MDXNET_2_9682 '
else :
mdx_only_ensem_a = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_only_ensem_a = ' UVR_MDXNET_3_9662 '
else :
mdx_only_ensem_a = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_only_ensem_a = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_only_ensem_a = ' UVR_MDXNET_Main '
else :
mdx_only_ensem_a = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_only_ensem_a ' ] :
mdx_model_run_a = ' no '
mdx_only_ensem_a = demucs_model_set_name_a
if data [ ' mdx_only_ensem_a ' ] == ' No Model ' :
2022-07-26 07:27:05 +02:00
mdx_model_run_a = ' no '
2022-07-23 09:56:57 +02:00
mdx_only_ensem_a = ' pass '
#MDX-Net/Demucs Model 2
if ' MDX-Net: ' in data [ ' mdx_only_ensem_b ' ] :
mdx_model_run_b = ' yes '
mdx_net_model_name = str ( data [ ' mdx_only_ensem_b ' ] )
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_only_ensem_b = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_only_ensem_b = ' UVR_MDXNET_1_9703 '
else :
mdx_only_ensem_b = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_only_ensem_b = ' UVR_MDXNET_2_9682 '
else :
mdx_only_ensem_b = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_only_ensem_b = ' UVR_MDXNET_3_9662 '
else :
mdx_only_ensem_b = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_only_ensem_b = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_only_ensem_b = ' UVR_MDXNET_Main '
else :
mdx_only_ensem_b = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_only_ensem_b ' ] :
mdx_model_run_b = ' no '
mdx_only_ensem_b = demucs_model_set_name_b
if data [ ' mdx_only_ensem_b ' ] == ' No Model ' :
2022-07-26 07:27:05 +02:00
mdx_model_run_b = ' no '
2022-07-23 09:56:57 +02:00
mdx_only_ensem_b = ' pass '
#MDX-Net/Demucs Model 3
if ' MDX-Net: ' in data [ ' mdx_only_ensem_c ' ] :
mdx_model_run_c = ' yes '
mdx_net_model_name = data [ ' mdx_only_ensem_c ' ]
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_only_ensem_c = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_only_ensem_c = ' UVR_MDXNET_1_9703 '
else :
mdx_only_ensem_c = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_only_ensem_c = ' UVR_MDXNET_2_9682 '
else :
mdx_only_ensem_c = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_only_ensem_c = ' UVR_MDXNET_3_9662 '
else :
mdx_only_ensem_c = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_only_ensem_c = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_only_ensem_c = ' UVR_MDXNET_Main '
else :
mdx_only_ensem_c = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_only_ensem_c ' ] :
mdx_model_run_c = ' no '
mdx_only_ensem_c = demucs_model_set_name_c
if data [ ' mdx_only_ensem_c ' ] == ' No Model ' :
2022-07-26 07:27:05 +02:00
mdx_model_run_c = ' no '
2022-07-23 09:56:57 +02:00
mdx_only_ensem_c = ' pass '
#MDX-Net/Demucs Model 4
if ' MDX-Net: ' in data [ ' mdx_only_ensem_d ' ] :
mdx_model_run_d = ' yes '
mdx_net_model_name = data [ ' mdx_only_ensem_d ' ]
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_only_ensem_d = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_only_ensem_d = ' UVR_MDXNET_1_9703 '
else :
mdx_only_ensem_d = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_only_ensem_d = ' UVR_MDXNET_2_9682 '
else :
mdx_only_ensem_d = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_only_ensem_d = ' UVR_MDXNET_3_9662 '
else :
mdx_only_ensem_d = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_only_ensem_d = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_only_ensem_d = ' UVR_MDXNET_Main '
else :
mdx_only_ensem_d = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_only_ensem_d ' ] :
mdx_model_run_d = ' no '
mdx_only_ensem_d = demucs_model_set_name_d
if data [ ' mdx_only_ensem_d ' ] == ' No Model ' :
2022-07-26 07:27:05 +02:00
mdx_model_run_d = ' no '
2022-07-23 09:56:57 +02:00
mdx_only_ensem_d = ' pass '
#MDX-Net/Demucs Model 5
if ' MDX-Net: ' in data [ ' mdx_only_ensem_e ' ] :
mdx_model_run_e = ' yes '
mdx_net_model_name = data [ ' mdx_only_ensem_e ' ]
head , sep , tail = mdx_net_model_name . partition ( ' MDX-Net: ' )
mdx_net_model_name = tail
#mdx_only_ensem_e = mdx_net_model_name
if mdx_net_model_name == ' UVR-MDX-NET 1 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx ' ) :
mdx_only_ensem_e = ' UVR_MDXNET_1_9703 '
else :
mdx_only_ensem_e = ' UVR_MDXNET_9703 '
elif mdx_net_model_name == ' UVR-MDX-NET 2 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx ' ) :
mdx_only_ensem_e = ' UVR_MDXNET_2_9682 '
else :
mdx_only_ensem_e = ' UVR_MDXNET_9682 '
elif mdx_net_model_name == ' UVR-MDX-NET 3 ' :
if os . path . isfile ( ' models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx ' ) :
mdx_only_ensem_e = ' UVR_MDXNET_3_9662 '
else :
mdx_only_ensem_e = ' UVR_MDXNET_9662 '
elif mdx_net_model_name == ' UVR-MDX-NET Karaoke ' :
mdx_only_ensem_e = ' UVR_MDXNET_KARA '
elif mdx_net_model_name == ' UVR-MDX-NET Main ' :
mdx_only_ensem_e = ' UVR_MDXNET_Main '
2022-05-23 04:47:47 +02:00
else :
2022-07-23 09:56:57 +02:00
mdx_only_ensem_e = mdx_net_model_name
if ' Demucs: ' in data [ ' mdx_only_ensem_e ' ] :
mdx_model_run_e = ' no '
mdx_only_ensem_e = demucs_model_set_name_e
if data [ ' mdx_only_ensem_e ' ] == ' No Model ' :
2022-07-26 07:27:05 +02:00
mdx_model_run_e = ' no '
2022-07-23 09:56:57 +02:00
mdx_only_ensem_e = ' pass '
if data [ ' mdx_only_ensem_c ' ] == ' No Model ' and data [ ' mdx_only_ensem_d ' ] == ' No Model ' and data [ ' mdx_only_ensem_e ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
}
]
elif data [ ' mdx_only_ensem_c ' ] == ' No Model ' and data [ ' mdx_only_ensem_d ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_e ,
' mdx_model_run ' : mdx_model_run_e ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_e } '
}
]
elif data [ ' mdx_only_ensem_c ' ] == ' No Model ' and data [ ' mdx_only_ensem_e ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_d ,
' mdx_model_run ' : mdx_model_run_d ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_d } '
}
]
elif data [ ' mdx_only_ensem_d ' ] == ' No Model ' and data [ ' mdx_only_ensem_e ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_c ,
' mdx_model_run ' : mdx_model_run_c ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_c } '
}
]
elif data [ ' mdx_only_ensem_d ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_c ,
' mdx_model_run ' : mdx_model_run_c ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_c } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_e ,
' mdx_model_run ' : mdx_model_run_e ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_e } '
}
]
elif data [ ' mdx_only_ensem_c ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_d ,
' mdx_model_run ' : mdx_model_run_d ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_d } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_e ,
' mdx_model_run ' : mdx_model_run_e ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_e } '
}
]
elif data [ ' mdx_only_ensem_e ' ] == ' No Model ' :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_c ,
' mdx_model_run ' : mdx_model_run_c ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_c } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_d ,
' mdx_model_run ' : mdx_model_run_d ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_d } '
}
]
else :
mdx_demuc_only = [
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_a ,
' mdx_model_run ' : mdx_model_run_a ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_a } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_b ,
' mdx_model_run ' : mdx_model_run_b ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_b } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_c ,
' mdx_model_run ' : mdx_model_run_c ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_c } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_d ,
' mdx_model_run ' : mdx_model_run_d ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_d } '
} ,
{
' model_name ' : ' pass ' ,
' model_name_c ' : ' pass ' ,
' mdx_model_name ' : mdx_only_ensem_e ,
' mdx_model_run ' : mdx_model_run_e ,
' model_location ' : ' pass ' ,
' loop_name ' : f ' Ensemble Mode - Running Model - { mdx_only_ensem_e } '
}
]
2022-06-13 09:07:19 +02:00
if data [ ' ensChoose ' ] == ' Multi-AI Ensemble ' :
2022-05-11 02:11:40 +02:00
loops = mdx_vr
2022-07-04 03:18:27 +02:00
ensefolder = ' Multi_AI_Ensemble_Outputs '
2022-07-23 09:56:57 +02:00
ensemode = ' Multi_AI_Ensemble '
if data [ ' ensChoose ' ] == ' Basic VR Ensemble ' :
loops = Basic_Ensem
ensefolder = ' Basic_VR_Outputs '
ensemode = ' Multi_VR_Ensemble '
if data [ ' ensChoose ' ] == ' Basic MD Ensemble ' :
loops = mdx_demuc_only
ensefolder = ' Basic_MDX_Net_Demucs_Ensemble '
ensemode = ' Basic_MDX_Net_Demucs_Ensemble '
2022-05-11 02:11:40 +02:00
#Prepare Audiofile(s)
for file_num , music_file in enumerate ( data [ ' input_paths ' ] , start = 1 ) :
# -Get text and update progress-
base_text = get_baseText ( total_files = len ( data [ ' input_paths ' ] ) ,
file_num = file_num )
progress_kwargs = { ' progress_var ' : progress_var ,
' total_files ' : len ( data [ ' input_paths ' ] ) ,
' file_num ' : file_num }
update_progress ( * * progress_kwargs ,
step = 0 )
try :
2022-07-04 03:18:27 +02:00
if float ( data [ ' noisereduc_s ' ] ) > = 11 :
text_widget . write ( ' Error: Noise Reduction only supports values between 0-10. \n Please set a value between 0-10 (with or without decimals) and try again. ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-11 02:11:40 +02:00
total , used , free = shutil . disk_usage ( " / " )
total_space = int ( total / 1.074e+9 )
used_space = int ( used / 1.074e+9 )
free_space = int ( free / 1.074e+9 )
if int ( free / 1.074e+9 ) < = int ( 2 ) :
text_widget . write ( ' Error: Not enough storage on main drive to continue. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n Please ensure your main drive has at least 3 GB \' s of storage and try again. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if int ( free / 1.074e+9 ) in [ 3 , 4 , 5 , 6 , 7 , 8 ] :
text_widget . write ( ' Warning: Your main drive is running low on storage. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n \n ' )
except :
pass
#Prepare to loop models
for i , c in tqdm ( enumerate ( loops ) , disable = True , desc = ' Iterations.. ' ) :
2022-05-23 04:47:47 +02:00
try :
2022-07-23 09:56:57 +02:00
if c [ ' mdx_model_name ' ] == ' tasnet.th ' :
ModelName_2 = " Tasnet_v1 "
elif c [ ' mdx_model_name ' ] == ' tasnet_extra.th ' :
ModelName_2 = " Tasnet_extra_v1 "
elif c [ ' mdx_model_name ' ] == ' demucs.th ' :
ModelName_2 = " Demucs_v1 "
elif c [ ' mdx_model_name ' ] == ' demucs_extra.th ' :
ModelName_2 = " Demucs_extra_v1 "
elif c [ ' mdx_model_name ' ] == ' light_extra.th ' :
ModelName_2 = " Light_v1 "
elif c [ ' mdx_model_name ' ] == ' light_extra.th ' :
ModelName_2 = " Light_extra_v1 "
elif c [ ' mdx_model_name ' ] == ' tasnet-beb46fac.th ' :
ModelName_2 = " Tasnet_v2 "
elif c [ ' mdx_model_name ' ] == ' tasnet_extra-df3777b2.th ' :
ModelName_2 = " Tasnet_extra_v2 "
elif c [ ' mdx_model_name ' ] == ' demucs48_hq-28a1282c.th ' :
ModelName_2 = " Demucs48_hq_v2 "
elif c [ ' mdx_model_name ' ] == ' demucs-e07c671f.th ' :
ModelName_2 = " Demucs_v2 "
elif c [ ' mdx_model_name ' ] == ' demucs_extra-3646af93.th ' :
ModelName_2 = " Demucs_extra_v2 "
elif c [ ' mdx_model_name ' ] == ' demucs_unittest-09ebc15f.th ' :
ModelName_2 = " Demucs_unittest_v2 "
else :
ModelName_2 = c [ ' mdx_model_name ' ]
2022-05-23 04:47:47 +02:00
except :
pass
2022-05-11 02:11:40 +02:00
def determineenseFolderName ( ) :
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
enseFolderName = ' '
if str ( ensefolder ) :
enseFolderName + = os . path . splitext ( os . path . basename ( ensefolder ) ) [ 0 ]
if enseFolderName :
2022-05-23 04:47:47 +02:00
try :
enseFolderName = ' / ' + enseFolderName + ' _ ' + str ( timestampnum )
except :
enseFolderName = ' / ' + enseFolderName + ' _ ' + str ( randomnum )
2022-05-11 02:11:40 +02:00
return enseFolderName
enseFolderName = determineenseFolderName ( )
2022-05-23 04:47:47 +02:00
2022-05-11 02:11:40 +02:00
if enseFolderName :
folder_path = f ' { data [ " export_path " ] } { enseFolderName } '
if not os . path . isdir ( folder_path ) :
os . mkdir ( folder_path )
# Determine File Name
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
base_name = f ' { data [ " export_path " ] } { enseFolderName } / { file_num } _ { os . path . splitext ( os . path . basename ( music_file ) ) [ 0 ] } '
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
enseExport = f ' { data [ " export_path " ] } { enseFolderName } / '
trackname = f ' { file_num } _ { os . path . splitext ( os . path . basename ( music_file ) ) [ 0 ] } '
2022-07-06 09:57:56 +02:00
def get_numbers_from_filename ( filename ) :
return re . search ( r ' \ d+ ' , filename ) . group ( 0 )
foldernum = get_numbers_from_filename ( enseFolderName )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
if c [ ' model_location ' ] == ' pass ' :
pass
else :
presentmodel = Path ( c [ ' model_location ' ] )
if presentmodel . is_file ( ) :
2022-06-13 09:07:19 +02:00
print ( f ' The file { presentmodel } exists ' )
2022-05-23 04:47:47 +02:00
else :
2022-06-13 09:07:19 +02:00
if data [ ' ensChoose ' ] == ' Multi-AI Ensemble ' :
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + ' Model " ' + c [ ' model_name ' ] + ' .pth " is missing. \n ' )
2022-07-23 09:56:57 +02:00
text_widget . write ( base_text + ' This model can be downloaded straight from the \" Settings \" options. \n ' )
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + f ' If the error persists, please verify all models are present. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
else :
text_widget . write ( base_text + ' Model " ' + c [ ' model_name ' ] + ' .pth " is missing. \n ' )
text_widget . write ( base_text + ' Installation of v5 Model Expansion Pack required to use this model. \n \n ' )
continue
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget . write ( c [ ' loop_name ' ] + ' \n \n ' )
text_widget . write ( base_text + ' Loading ' + c [ ' model_name_c ' ] + ' ... ' )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
aggresive_set = float ( data [ ' agg ' ] / 100 )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
model_size = math . ceil ( os . stat ( c [ ' model_location ' ] ) . st_size / 1024 )
nn_architecture = ' {} KB ' . format ( min ( nn_arch_sizes , key = lambda x : abs ( x - model_size ) ) )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
nets = importlib . import_module ( ' lib_v5.nets ' + f ' _ { nn_architecture } ' . replace ( ' _ {} KB ' . format ( nn_arch_sizes [ 0 ] ) , ' ' ) , package = None )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget . write ( ' Done! \n ' )
ModelName = ( c [ ' model_location ' ] )
2022-07-23 09:56:57 +02:00
ModelParamSettings = ( c [ ' model_param ' ] )
2022-05-23 04:47:47 +02:00
#Package Models
2022-07-23 09:56:57 +02:00
if ModelParamSettings == ' Auto ' :
model_hash = hashlib . md5 ( open ( ModelName , ' rb ' ) . read ( ) ) . hexdigest ( )
model_params = [ ]
model_params = lib_v5 . filelist . provide_model_param_hash ( model_hash )
#print(model_params)
if model_params [ 0 ] == ' Not Found Using Hash ' :
model_params = [ ]
model_params = lib_v5 . filelist . provide_model_param_name ( ModelName )
if model_params [ 0 ] == ' Not Found Using Name ' :
text_widget . write ( base_text + f ' Unable to set model parameters automatically with the selected model. Continue? \n ' )
confirm = tk . messagebox . askyesno ( title = ' Unrecognized Model Detected ' ,
message = f ' \n The application could not automatically set the model param for the selected model. \n \n ' +
f ' Would you like to select the Model Param file for this model? \n \n ' +
f ' This model will be skipped if no Model Param is selected. ' )
if confirm :
model_param_selection = filedialog . askopenfilename ( initialdir = ' lib_v5/modelparams ' ,
title = f ' Select Model Param ' ,
filetypes = [ ( " Model Param " , " *.json " ) ] )
model_param_file_path = str ( model_param_selection )
model_param_file = os . path . splitext ( os . path . basename ( model_param_file_path ) ) [ 0 ] + ' .json '
model_params = [ model_param_file_path , model_param_file ]
with open ( f " lib_v5/filelists/model_cache/vr_param_cache/ { model_hash } .txt " , ' w ' ) as f :
f . write ( model_param_file )
if model_params [ 0 ] == ' ' :
text_widget . write ( base_text + f ' Model param not selected. \n ' )
text_widget . write ( base_text + f ' Moving on to next model... \n \n ' )
continue
else :
pass
else :
text_widget . write ( base_text + f ' Model param not selected. \n ' )
text_widget . write ( base_text + f ' Moving on to next model... \n \n ' )
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
continue
else :
model_param_file_path = f ' lib_v5/modelparams/ { ModelParamSettings } '
model_params = [ model_param_file_path , ModelParamSettings ]
2022-05-23 04:47:47 +02:00
ModelName_1 = ( c [ ' model_name ' ] )
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
#print('model param function output ', model_params)
print ( ' Model Parameters: ' , model_params [ 0 ] )
text_widget . write ( base_text + ' Loading assigned model parameters ' + ' \" ' + model_params [ 1 ] + ' \" ... ' )
2022-05-23 04:47:47 +02:00
2022-07-23 09:56:57 +02:00
mp = ModelParameters ( model_params [ 0 ] )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget . write ( ' Done! \n ' )
#Load model
if os . path . isfile ( c [ ' model_location ' ] ) :
device = torch . device ( ' cpu ' )
model = nets . CascadedASPPNet ( mp . param [ ' bins ' ] * 2 )
model . load_state_dict ( torch . load ( c [ ' model_location ' ] ,
map_location = device ) )
if torch . cuda . is_available ( ) and data [ ' gpu ' ] > = 0 :
device = torch . device ( ' cuda: {} ' . format ( data [ ' gpu ' ] ) )
model . to ( device )
model_name = os . path . basename ( c [ " model_name " ] )
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
# -Go through the different steps of Separation-
2022-05-23 04:47:47 +02:00
# Wave source
text_widget . write ( base_text + ' Loading audio source... ' )
X_wave , y_wave , X_spec_s , y_spec_s = { } , { } , { } , { }
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
bands_n = len ( mp . param [ ' band ' ] )
for d in range ( bands_n , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == bands_n : # high-end band
X_wave [ d ] , _ = librosa . load (
music_file , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if X_wave [ d ] . ndim == 1 :
X_wave [ d ] = np . asarray ( [ X_wave [ d ] , X_wave [ d ] ] )
else : # lower bands
X_wave [ d ] = librosa . resample ( X_wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
# Stft of wave source
X_spec_s [ d ] = spec_utils . wave_to_spectrogram_mt ( X_wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] ,
mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
if d == bands_n and data [ ' high_end_process ' ] != ' none ' :
input_high_end_h = ( bp [ ' n_fft ' ] / / 2 - bp [ ' crop_stop ' ] ) + ( mp . param [ ' pre_filter_stop ' ] - mp . param [ ' pre_filter_start ' ] )
input_high_end = X_spec_s [ d ] [ : , bp [ ' n_fft ' ] / / 2 - input_high_end_h : bp [ ' n_fft ' ] / / 2 , : ]
text_widget . write ( ' Done! \n ' )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
update_progress ( * * progress_kwargs ,
step = 0.1 )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + ' Loading the stft of audio source... ' )
text_widget . write ( ' Done! \n ' )
text_widget . write ( base_text + " Please Wait... \n " )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
X_spec_m = spec_utils . combine_spectrograms ( X_spec_s , mp )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
del X_wave , X_spec_s
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
def inference ( X_spec , device , model , aggressiveness ) :
def _execute ( X_mag_pad , roi_size , n_window , device , model , aggressiveness ) :
model . eval ( )
with torch . no_grad ( ) :
preds = [ ]
iterations = [ n_window ]
total_iterations = sum ( iterations )
text_widget . write ( base_text + " Processing " f " { total_iterations } Slices... " )
for i in tqdm ( range ( n_window ) ) :
update_progress ( * * progress_kwargs ,
step = ( 0.1 + ( 0.8 / n_window * i ) ) )
start = i * roi_size
X_mag_window = X_mag_pad [ None , : , : , start : start + data [ ' window_size ' ] ]
X_mag_window = torch . from_numpy ( X_mag_window ) . to ( device )
pred = model . predict ( X_mag_window , aggressiveness )
pred = pred . detach ( ) . cpu ( ) . numpy ( )
preds . append ( pred [ 0 ] )
pred = np . concatenate ( preds , axis = 2 )
text_widget . write ( ' Done! \n ' )
return pred
def preprocess ( X_spec ) :
X_mag = np . abs ( X_spec )
X_phase = np . angle ( X_spec )
return X_mag , X_phase
X_mag , X_phase = preprocess ( X_spec )
coef = X_mag . max ( )
X_mag_pre = X_mag / coef
n_frame = X_mag_pre . shape [ 2 ]
pad_l , pad_r , roi_size = dataset . make_padding ( n_frame ,
data [ ' window_size ' ] , model . offset )
n_window = int ( np . ceil ( n_frame / roi_size ) )
2022-05-11 02:11:40 +02:00
X_mag_pad = np . pad (
X_mag_pre , ( ( 0 , 0 ) , ( 0 , 0 ) , ( pad_l , pad_r ) ) , mode = ' constant ' )
2022-05-23 04:47:47 +02:00
pred = _execute ( X_mag_pad , roi_size , n_window ,
device , model , aggressiveness )
pred = pred [ : , : , : n_frame ]
if data [ ' tta ' ] :
pad_l + = roi_size / / 2
pad_r + = roi_size / / 2
n_window + = 1
X_mag_pad = np . pad (
X_mag_pre , ( ( 0 , 0 ) , ( 0 , 0 ) , ( pad_l , pad_r ) ) , mode = ' constant ' )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
pred_tta = _execute ( X_mag_pad , roi_size , n_window ,
device , model , aggressiveness )
pred_tta = pred_tta [ : , : , roi_size / / 2 : ]
pred_tta = pred_tta [ : , : , : n_frame ]
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
return ( pred + pred_tta ) * 0.5 * coef , X_mag , np . exp ( 1. j * X_phase )
else :
return pred * coef , X_mag , np . exp ( 1. j * X_phase )
aggressiveness = { ' value ' : aggresive_set , ' split_bin ' : mp . param [ ' band ' ] [ 1 ] [ ' crop_stop ' ] }
if data [ ' tta ' ] :
text_widget . write ( base_text + " Running Inferences (TTA)... \n " )
2022-05-11 02:11:40 +02:00
else :
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + " Running Inference... \n " )
pred , X_mag , X_phase = inference ( X_spec_m ,
device ,
model , aggressiveness )
# update_progress(**progress_kwargs,
# step=0.8)
# Postprocess
if data [ ' postprocess ' ] :
2022-05-11 02:11:40 +02:00
try :
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + ' Post processing... ' )
pred_inv = np . clip ( X_mag - pred , 0 , np . inf )
pred = spec_utils . mask_silence ( pred , pred_inv )
text_widget . write ( ' Done! \n ' )
except Exception as e :
text_widget . write ( ' \n ' + base_text + ' Post process failed, check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while attempting to run Post Processing on " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
# Inverse stft
# nopep8
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
2022-05-11 02:11:40 +02:00
if data [ ' voc_only ' ] :
pass
else :
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + ' Saving Instrumental... ' )
if data [ ' high_end_process ' ] . startswith ( ' mirroring ' ) :
input_high_end_ = spec_utils . mirroring ( data [ ' high_end_process ' ] , y_spec_m , input_high_end , mp )
wav_instrument = spec_utils . cmb_spectrogram_to_wave ( y_spec_m , mp , input_high_end_h , input_high_end_ )
if data [ ' voc_only ' ] :
2022-05-11 02:11:40 +02:00
pass
2022-05-23 04:47:47 +02:00
else :
text_widget . write ( ' Done! \n ' )
2022-05-11 02:11:40 +02:00
else :
2022-05-23 04:47:47 +02:00
wav_instrument = spec_utils . cmb_spectrogram_to_wave ( y_spec_m , mp )
if data [ ' voc_only ' ] :
2022-05-11 02:11:40 +02:00
pass
2022-05-23 04:47:47 +02:00
else :
text_widget . write ( ' Done! \n ' )
if data [ ' inst_only ' ] :
pass
2022-05-11 02:11:40 +02:00
else :
2022-05-23 04:47:47 +02:00
text_widget . write ( base_text + ' Saving Vocals... ' )
if data [ ' high_end_process ' ] . startswith ( ' mirroring ' ) :
input_high_end_ = spec_utils . mirroring ( data [ ' high_end_process ' ] , v_spec_m , input_high_end , mp )
wav_vocals = spec_utils . cmb_spectrogram_to_wave ( v_spec_m , mp , input_high_end_h , input_high_end_ )
if data [ ' inst_only ' ] :
pass
else :
text_widget . write ( ' Done! \n ' )
else :
wav_vocals = spec_utils . cmb_spectrogram_to_wave ( v_spec_m , mp )
if data [ ' inst_only ' ] :
pass
else :
text_widget . write ( ' Done! \n ' )
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
update_progress ( * * progress_kwargs ,
step = 1 )
# Save output music files
save_files ( wav_instrument , wav_vocals )
# Save output image
if data [ ' output_image ' ] :
with open ( ' {} _ {} _Instruments.jpg ' . format ( base_name , c [ ' model_name ' ] ) , mode = ' wb ' ) as f :
image = spec_utils . spectrogram_to_image ( y_spec_m )
_ , bin_image = cv2 . imencode ( ' .jpg ' , image )
bin_image . tofile ( f )
with open ( ' {} _ {} _Vocals.jpg ' . format ( base_name , c [ ' model_name ' ] ) , mode = ' wb ' ) as f :
image = spec_utils . spectrogram_to_image ( v_spec_m )
_ , bin_image = cv2 . imencode ( ' .jpg ' , image )
bin_image . tofile ( f )
2022-07-23 09:56:57 +02:00
text_widget . write ( base_text + ' Completed Separation! \n \n ' )
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
###################################
if data [ ' ensChoose ' ] == ' Multi-AI Ensemble ' or data [ ' ensChoose ' ] == ' Basic MD Ensemble ' :
if data [ ' demucsmodel ' ] :
demucs_switch = ' on '
else :
demucs_switch = ' off '
if data [ ' demucs_only ' ] :
demucs_only = ' on '
else :
demucs_only = ' off '
if c [ ' mdx_model_name ' ] == ' tasnet.th ' :
post_mdx_name = " Tasnet v1 "
elif c [ ' mdx_model_name ' ] == ' tasnet_extra.th ' :
post_mdx_name = " Tasnet_extra v1 "
elif c [ ' mdx_model_name ' ] == ' demucs.th ' :
post_mdx_name = " Demucs v1 "
elif c [ ' mdx_model_name ' ] == ' demucs_extra.th ' :
post_mdx_name = " Demucs_extra v1 "
elif c [ ' mdx_model_name ' ] == ' light_extra.th ' :
post_mdx_name = " Light v1 "
elif c [ ' mdx_model_name ' ] == ' light_extra.th ' :
post_mdx_name = " Light_extra v1 "
elif c [ ' mdx_model_name ' ] == ' tasnet-beb46fac.th ' :
post_mdx_name = " Tasnet v2 "
elif c [ ' mdx_model_name ' ] == ' tasnet_extra-df3777b2.th ' :
post_mdx_name = " Tasnet_extra v2 "
elif c [ ' mdx_model_name ' ] == ' demucs48_hq-28a1282c.th ' :
post_mdx_name = " Demucs48_hq v2 "
elif c [ ' mdx_model_name ' ] == ' demucs-e07c671f.th ' :
post_mdx_name = " Demucs v2 "
elif c [ ' mdx_model_name ' ] == ' demucs_extra-3646af93.th ' :
post_mdx_name = " Demucs_extra v2 "
elif c [ ' mdx_model_name ' ] == ' demucs_unittest-09ebc15f.th ' :
post_mdx_name = " Demucs_unittest v2 "
else :
post_mdx_name = c [ ' mdx_model_name ' ]
2022-05-11 02:11:40 +02:00
2022-05-23 04:47:47 +02:00
mdx_name = c [ ' mdx_model_name ' ]
2022-07-23 09:56:57 +02:00
2022-05-23 04:47:47 +02:00
if c [ ' mdx_model_name ' ] == ' pass ' :
2022-05-11 02:11:40 +02:00
pass
else :
2022-07-23 09:56:57 +02:00
text_widget . write ( ' Ensemble Mode - Running Model - ' + post_mdx_name + ' \n \n ' )
if c [ ' mdx_model_run ' ] == ' no ' :
if ' UVR ' in mdx_name :
demucs_only = ' on '
demucs_switch = ' on '
demucs_model_set = mdx_name
model_set = ' '
model_set_name = ' UVR '
modeltype = ' v '
noise_pro = ' MDX-NET_Noise_Profile_14_kHz '
stemset_n = ' (Vocals) '
2022-07-04 03:18:27 +02:00
else :
2022-07-23 09:56:57 +02:00
demucs_only = ' on '
demucs_switch = ' on '
demucs_model_set = mdx_name
model_set = ' '
model_set_name = ' extra '
modeltype = ' v '
noise_pro = ' MDX-NET_Noise_Profile_14_kHz '
stemset_n = ' (Vocals) '
if c [ ' mdx_model_run ' ] == ' yes ' :
2022-07-04 03:18:27 +02:00
demucs_only = ' off '
2022-07-23 09:56:57 +02:00
model_set = f " { mdx_name } .onnx "
model_set_name = mdx_name
demucs_model_set = demucs_model_set_name
mdx_model_path = f ' models/MDX_Net_Models/ { mdx_name } .onnx '
model_hash = hashlib . md5 ( open ( mdx_model_path , ' rb ' ) . read ( ) ) . hexdigest ( )
model_params_mdx = [ ]
model_params_mdx = lib_v5 . filelist . provide_mdx_model_param_name ( model_hash )
modeltype = model_params_mdx [ 0 ]
noise_pro = model_params_mdx [ 1 ]
stemset_n = model_params_mdx [ 2 ]
if autocompensate :
compensate = model_params_mdx [ 3 ]
2022-07-04 03:18:27 +02:00
else :
compensate = data [ ' compensate ' ]
2022-07-23 09:56:57 +02:00
source_val = model_params_mdx [ 4 ]
n_fft_scale_set = model_params_mdx [ 5 ]
dim_f_set = model_params_mdx [ 6 ]
#print(model_params_mdx)
2022-06-13 09:07:19 +02:00
print ( ' demucs_only? ' , demucs_only )
2022-06-06 22:44:20 +02:00
if data [ ' noise_pro_select ' ] == ' Auto Select ' :
noise_pro_set = noise_pro
else :
noise_pro_set = data [ ' noise_pro_select ' ]
2022-05-23 04:47:47 +02:00
update_progress ( * * progress_kwargs ,
step = 0 )
if data [ ' noisereduc_s ' ] == ' None ' :
pass
else :
if not os . path . isfile ( " lib_v5 \ sox \ sox.exe " ) :
data [ ' noisereduc_s ' ] = ' None '
data [ ' non_red ' ] = False
widget_text . write ( base_text + ' SoX is missing and required for noise reduction. \n ' )
widget_text . write ( base_text + ' See the \" More Info \" tab in the Help Guide. \n ' )
widget_text . write ( base_text + ' Noise Reduction will be disabled until SoX is available. \n \n ' )
e = os . path . join ( data [ " export_path " ] )
pred = Predictor ( )
2022-07-23 09:56:57 +02:00
if c [ ' mdx_model_run ' ] == ' yes ' :
if stemset_n == ' (Bass) ' or stemset_n == ' (Drums) ' or stemset_n == ' (Other) ' :
widget_text . write ( base_text + ' Only vocal and instrumental MDX-Net models are supported in \n ensemble mode. \n ' )
widget_text . write ( base_text + ' Moving on to next model... \n \n ' )
continue
if modeltype == ' Not Set ' or \
noise_pro == ' Not Set ' or \
stemset_n == ' Not Set ' or \
compensate == ' Not Set ' or \
source_val == ' Not Set ' or \
n_fft_scale_set == ' Not Set ' or \
dim_f_set == ' Not Set ' :
confirm = tk . messagebox . askyesno ( title = ' Unrecognized Model Detected ' ,
message = f ' \n Would you like to set the correct model parameters for this model before continuing? \n ' )
if confirm :
pred . mdx_options ( )
else :
text_widget . write ( base_text + ' An unrecognized model has been detected. \n ' )
text_widget . write ( base_text + ' Please configure the ONNX model settings accordingly and try again. \n ' )
text_widget . write ( base_text + ' Moving on to next model... \n \n ' )
continue
2022-06-13 09:07:19 +02:00
pred . prediction_setup ( )
2022-05-23 04:47:47 +02:00
# split
pred . prediction (
m = music_file ,
)
2022-05-11 02:11:40 +02:00
else :
pass
# Emsembling Outputs
def get_files ( folder = " " , prefix = " " , suffix = " " ) :
return [ f " { folder } { i } " for i in os . listdir ( folder ) if i . startswith ( prefix ) if i . endswith ( suffix ) ]
2022-05-23 04:47:47 +02:00
if data [ ' appendensem ' ] == False :
2022-07-06 09:57:56 +02:00
if data [ ' settest ' ] :
voc_inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _ {} _(Instrumental) ' . format ( foldernum , trackname ) ,
' type ' : ' Instrumentals '
} ,
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _ {} _(Vocals) ' . format ( foldernum , trackname ) ,
' type ' : ' Vocals '
}
]
inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _ {} _(Instrumental) ' . format ( foldernum , trackname ) ,
' type ' : ' Instrumentals '
}
]
vocal = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _ {} _(Vocals) ' . format ( foldernum , trackname ) ,
' type ' : ' Vocals '
}
]
else :
voc_inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _(Instrumental) ' . format ( trackname ) ,
' type ' : ' Instrumentals '
} ,
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _(Vocals) ' . format ( trackname ) ,
' type ' : ' Vocals '
}
]
inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _(Instrumental) ' . format ( trackname ) ,
' type ' : ' Instrumentals '
}
]
vocal = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _(Vocals) ' . format ( trackname ) ,
' type ' : ' Vocals '
}
]
2022-05-23 04:47:47 +02:00
else :
2022-07-06 09:57:56 +02:00
if data [ ' settest ' ] :
voc_inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _ {} _Ensembled_ {} _(Instrumental) ' . format ( foldernum , trackname , ensemode ) ,
' type ' : ' Instrumentals '
} ,
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _ {} _Ensembled_ {} _(Vocals) ' . format ( foldernum , trackname , ensemode ) ,
' type ' : ' Vocals '
}
]
inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _ {} _Ensembled_ {} _(Instrumental) ' . format ( foldernum , trackname , ensemode ) ,
' type ' : ' Instrumentals '
}
]
vocal = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _ {} _Ensembled_ {} _(Vocals) ' . format ( foldernum , trackname , ensemode ) ,
' type ' : ' Vocals '
}
]
else :
voc_inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _Ensembled_ {} _(Instrumental) ' . format ( trackname , ensemode ) ,
' type ' : ' Instrumentals '
} ,
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _Ensembled_ {} _(Vocals) ' . format ( trackname , ensemode ) ,
' type ' : ' Vocals '
}
]
inst = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " ) ,
' output ' : ' {} _Ensembled_ {} _(Instrumental) ' . format ( trackname , ensemode ) ,
' type ' : ' Instrumentals '
}
]
vocal = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " ) ,
' output ' : ' {} _Ensembled_ {} _(Vocals) ' . format ( trackname , ensemode ) ,
' type ' : ' Vocals '
}
]
2022-05-11 02:11:40 +02:00
if data [ ' voc_only ' ] :
ensembles = vocal
elif data [ ' inst_only ' ] :
ensembles = inst
else :
ensembles = voc_inst
try :
for i , e in tqdm ( enumerate ( ensembles ) , desc = " Ensembling... " ) :
text_widget . write ( base_text + " Ensembling " + e [ ' type ' ] + " ... " )
wave , specs = { } , { }
mp = ModelParameters ( e [ ' model_params ' ] )
for i in range ( len ( e [ ' files ' ] ) ) :
spec = { }
for d in range ( len ( mp . param [ ' band ' ] ) , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == len ( mp . param [ ' band ' ] ) : # high-end band
wave [ d ] , _ = librosa . load (
e [ ' files ' ] [ i ] , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if len ( wave [ d ] . shape ) == 1 : # mono to stereo
wave [ d ] = np . array ( [ wave [ d ] , wave [ d ] ] )
else : # lower bands
wave [ d ] = librosa . resample ( wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
spec [ d ] = spec_utils . wave_to_spectrogram ( wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] , mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
specs [ i ] = spec_utils . combine_spectrograms ( spec , mp )
del wave
sf . write ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ,
2022-07-06 09:57:56 +02:00
normalization_set ( spec_utils . cmb_spectrogram_to_wave ( spec_utils . ensembling ( e [ ' algorithm ' ] ,
specs ) , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
if data [ ' saveFormat ' ] == ' Mp3 ' :
try :
musfile = pydub . AudioSegment . from_wav ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) )
2022-07-06 09:57:56 +02:00
musfile . export ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .mp3 ' . format ( e [ ' output ' ] ) ) ) , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
os . remove ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ) )
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Mp3(s). \n ' )
text_widget . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... ' )
else :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Mp3(s). \n ' )
text_widget . write ( base_text + ' Please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while attempting to save file as mp3 " { os . path . basename ( music_file ) } " . \n \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
if data [ ' saveFormat ' ] == ' Flac ' :
try :
musfile = pydub . AudioSegment . from_wav ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) )
musfile . export ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .flac ' . format ( e [ ' output ' ] ) ) ) , format = " flac " )
os . remove ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ) )
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Flac(s). \n ' )
text_widget . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... ' )
else :
2022-06-02 02:00:43 +02:00
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Flac(s). \n ' )
2022-05-11 02:11:40 +02:00
text_widget . write ( base_text + ' Please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while attempting to save file as flac " { os . path . basename ( music_file ) } " . \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
text_widget . write ( " Done! \n " )
except :
text_widget . write ( ' \n ' + base_text + ' Not enough files to ensemble. ' )
pass
update_progress ( * * progress_kwargs ,
step = 0.95 )
text_widget . write ( " \n " )
try :
if not data [ ' save ' ] : # Deletes all outputs if Save All Outputs isn't checked
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " )
for file in files :
os . remove ( file )
if not data [ ' save ' ] :
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " )
for file in files :
os . remove ( file )
except :
pass
if data [ ' save ' ] and data [ ' saveFormat ' ] == ' Mp3 ' :
try :
text_widget . write ( base_text + ' Saving all ensemble outputs in Mp3... ' )
path = enseExport
#Change working directory
os . chdir ( path )
audio_files = os . listdir ( )
for file in audio_files :
#spliting the file into the name and the extension
name , ext = os . path . splitext ( file )
if ext == " .wav " :
if trackname in file :
musfile = pydub . AudioSegment . from_wav ( file )
#rename them using the old name + ".wav"
2022-07-06 09:57:56 +02:00
musfile . export ( " {0} .mp3 " . format ( name ) , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
try :
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " )
for file in files :
os . remove ( file )
except :
pass
try :
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " )
for file in files :
os . remove ( file )
except :
pass
text_widget . write ( ' Done! \n \n ' )
base_path = os . path . dirname ( os . path . abspath ( __file__ ) )
os . chdir ( base_path )
except Exception as e :
base_path = os . path . dirname ( os . path . abspath ( __file__ ) )
os . chdir ( base_path )
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Mp3(s). \n ' )
text_widget . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
else :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Mp3(s). \n ' )
text_widget . write ( base_text + ' Please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' \n Error Received while attempting to save ensembled outputs as mp3s. \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
if data [ ' save ' ] and data [ ' saveFormat ' ] == ' Flac ' :
try :
text_widget . write ( base_text + ' Saving all ensemble outputs in Flac... ' )
path = enseExport
#Change working directory
os . chdir ( path )
audio_files = os . listdir ( )
for file in audio_files :
#spliting the file into the name and the extension
name , ext = os . path . splitext ( file )
if ext == " .wav " :
if trackname in file :
musfile = pydub . AudioSegment . from_wav ( file )
#rename them using the old name + ".wav"
musfile . export ( " {0} .flac " . format ( name ) , format = " flac " )
try :
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Vocals).wav " )
for file in files :
os . remove ( file )
except :
pass
try :
files = get_files ( folder = enseExport , prefix = trackname , suffix = " _(Instrumental).wav " )
for file in files :
os . remove ( file )
except :
pass
text_widget . write ( ' Done! \n \n ' )
base_path = os . path . dirname ( os . path . abspath ( __file__ ) )
os . chdir ( base_path )
except Exception as e :
base_path = os . path . dirname ( os . path . abspath ( __file__ ) )
os . chdir ( base_path )
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Flac(s). \n ' )
text_widget . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
else :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Flac(s). \n ' )
text_widget . write ( base_text + ' Please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' \n Error Received while attempting to ensembled outputs as Flacs. \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
try :
os . remove ( ' temp.wav ' )
except :
pass
if len ( os . listdir ( enseExport ) ) == 0 : #Check if the folder is empty
shutil . rmtree ( folder_path ) #Delete folder if empty
else :
progress_kwargs = { ' progress_var ' : progress_var ,
' total_files ' : len ( data [ ' input_paths ' ] ) ,
' file_num ' : len ( data [ ' input_paths ' ] ) }
base_text = get_baseText ( total_files = len ( data [ ' input_paths ' ] ) ,
file_num = len ( data [ ' input_paths ' ] ) )
try :
total , used , free = shutil . disk_usage ( " / " )
total_space = int ( total / 1.074e+9 )
used_space = int ( used / 1.074e+9 )
free_space = int ( free / 1.074e+9 )
if int ( free / 1.074e+9 ) < = int ( 2 ) :
text_widget . write ( ' Error: Not enough storage on main drive to continue. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n Please ensure your main drive has at least 3 GB \' s of storage and try again. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if int ( free / 1.074e+9 ) in [ 3 , 4 , 5 , 6 , 7 , 8 ] :
text_widget . write ( ' Warning: Your main drive is running low on storage. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n \n ' )
except :
pass
music_file = data [ ' input_paths ' ]
if len ( data [ ' input_paths ' ] ) < = 1 :
text_widget . write ( base_text + " Not enough files to process. \n " )
pass
else :
update_progress ( * * progress_kwargs ,
step = 0.2 )
savefilename = ( data [ ' input_paths ' ] [ 0 ] )
trackname1 = f ' { os . path . splitext ( os . path . basename ( savefilename ) ) [ 0 ] } '
2022-07-06 09:57:56 +02:00
timestampnum = round ( datetime . utcnow ( ) . timestamp ( ) )
randomnum = randrange ( 100000 , 1000000 )
2022-05-11 02:11:40 +02:00
2022-07-06 09:57:56 +02:00
if data [ ' settest ' ] :
try :
insts = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _Manual_Ensemble_(Min Spec) ' . format ( timestampnum , trackname1 ) ,
' type ' : ' Instrumentals '
}
]
vocals = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _Manual_Ensemble_(Max Spec) ' . format ( timestampnum , trackname1 ) ,
' type ' : ' Vocals '
}
]
invert_spec = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _diff_si ' . format ( timestampnum , trackname1 ) ,
' type ' : ' Spectral Inversion '
}
]
invert_nor = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _diff_ni ' . format ( timestampnum , trackname1 ) ,
' type ' : ' Normal Inversion '
}
]
except :
insts = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _Manual_Ensemble_(Min Spec) ' . format ( randomnum , trackname1 ) ,
' type ' : ' Instrumentals '
}
]
vocals = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _Manual_Ensemble_(Max Spec) ' . format ( randomnum , trackname1 ) ,
' type ' : ' Vocals '
}
]
invert_spec = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _diff_si ' . format ( randomnum , trackname1 ) ,
' type ' : ' Spectral Inversion '
}
]
invert_nor = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _ {} _diff_ni ' . format ( randomnum , trackname1 ) ,
' type ' : ' Normal Inversion '
}
]
else :
insts = [
{
' algorithm ' : ' min_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _Manual_Ensemble_(Min Spec) ' . format ( trackname1 ) ,
' type ' : ' Instrumentals '
}
]
vocals = [
{
' algorithm ' : ' max_mag ' ,
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _Manual_Ensemble_(Max Spec) ' . format ( trackname1 ) ,
' type ' : ' Vocals '
}
]
invert_spec = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _diff_si ' . format ( trackname1 ) ,
' type ' : ' Spectral Inversion '
}
]
invert_nor = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' output ' : ' {} _diff_ni ' . format ( trackname1 ) ,
' type ' : ' Normal Inversion '
}
]
2022-05-11 02:11:40 +02:00
if data [ ' algo ' ] == ' Instrumentals (Min Spec) ' :
ensem = insts
if data [ ' algo ' ] == ' Vocals (Max Spec) ' :
ensem = vocals
if data [ ' algo ' ] == ' Invert (Spectral) ' :
ensem = invert_spec
if data [ ' algo ' ] == ' Invert (Normal) ' :
ensem = invert_nor
#Prepare to loop models
if data [ ' algo ' ] == ' Instrumentals (Min Spec) ' or data [ ' algo ' ] == ' Vocals (Max Spec) ' :
for i , e in tqdm ( enumerate ( ensem ) , desc = " Ensembling... " ) :
text_widget . write ( base_text + " Ensembling " + e [ ' type ' ] + " ... " )
wave , specs = { } , { }
mp = ModelParameters ( e [ ' model_params ' ] )
for i in range ( len ( data [ ' input_paths ' ] ) ) :
spec = { }
for d in range ( len ( mp . param [ ' band ' ] ) , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == len ( mp . param [ ' band ' ] ) : # high-end band
wave [ d ] , _ = librosa . load (
data [ ' input_paths ' ] [ i ] , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if len ( wave [ d ] . shape ) == 1 : # mono to stereo
wave [ d ] = np . array ( [ wave [ d ] , wave [ d ] ] )
else : # lower bands
wave [ d ] = librosa . resample ( wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
spec [ d ] = spec_utils . wave_to_spectrogram ( wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] , mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
specs [ i ] = spec_utils . combine_spectrograms ( spec , mp )
del wave
sf . write ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ,
2022-07-06 09:57:56 +02:00
normalization_set ( spec_utils . cmb_spectrogram_to_wave ( spec_utils . ensembling ( e [ ' algorithm ' ] ,
specs ) , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
if data [ ' saveFormat ' ] == ' Mp3 ' :
try :
musfile = pydub . AudioSegment . from_wav ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) )
2022-07-06 09:57:56 +02:00
musfile . export ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .mp3 ' . format ( e [ ' output ' ] ) ) ) , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
os . remove ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ) )
except Exception as e :
text_widget . write ( ' \n ' + base_text + ' Failed to save output(s) as Mp3. ' )
text_widget . write ( ' \n ' + base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
text_widget . write ( base_text + f ' Complete! \n ' )
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
2022-06-13 09:07:19 +02:00
f ' Error Received while attempting to run Manual Ensemble: \n ' +
2022-05-11 02:11:40 +02:00
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL )
return
if data [ ' saveFormat ' ] == ' Flac ' :
try :
musfile = pydub . AudioSegment . from_wav ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) )
musfile . export ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .flac ' . format ( e [ ' output ' ] ) ) ) , format = " flac " )
os . remove ( ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ) )
except Exception as e :
text_widget . write ( ' \n ' + base_text + ' Failed to save output as Flac. \n ' )
text_widget . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
text_widget . write ( base_text + ' Moving on... \n ' )
text_widget . write ( base_text + f ' Complete! \n ' )
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
2022-06-13 09:07:19 +02:00
f ' Error Received while attempting to run Manual Ensemble: \n ' +
2022-05-11 02:11:40 +02:00
f ' Process Method: Ensemble Mode \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL )
return
text_widget . write ( " Done! \n " )
if data [ ' algo ' ] == ' Invert (Spectral) ' and data [ ' algo ' ] == ' Invert (Normal) ' :
if len ( data [ ' input_paths ' ] ) != 2 :
text_widget . write ( base_text + " Invalid file count. \n " )
pass
else :
for i , e in tqdm ( enumerate ( ensem ) , desc = " Inverting... " ) :
wave , specs = { } , { }
mp = ModelParameters ( e [ ' model_params ' ] )
for i in range ( len ( data [ ' input_paths ' ] ) ) :
spec = { }
for d in range ( len ( mp . param [ ' band ' ] ) , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == len ( mp . param [ ' band ' ] ) : # high-end band
wave [ d ] , _ = librosa . load (
data [ ' input_paths ' ] [ i ] , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if len ( wave [ d ] . shape ) == 1 : # mono to stereo
wave [ d ] = np . array ( [ wave [ d ] , wave [ d ] ] )
else : # lower bands
wave [ d ] = librosa . resample ( wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
spec [ d ] = spec_utils . wave_to_spectrogram ( wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] , mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
specs [ i ] = spec_utils . combine_spectrograms ( spec , mp )
del wave
ln = min ( [ specs [ 0 ] . shape [ 2 ] , specs [ 1 ] . shape [ 2 ] ] )
specs [ 0 ] = specs [ 0 ] [ : , : , : ln ]
specs [ 1 ] = specs [ 1 ] [ : , : , : ln ]
if data [ ' algo ' ] == ' Invert (Spectral) ' :
text_widget . write ( base_text + " Performing " + e [ ' type ' ] + " ... " )
X_mag = np . abs ( specs [ 0 ] )
y_mag = np . abs ( specs [ 1 ] )
max_mag = np . where ( X_mag > = y_mag , X_mag , y_mag )
v_spec = specs [ 1 ] - max_mag * np . exp ( 1. j * np . angle ( specs [ 0 ] ) )
sf . write ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ,
2022-07-06 09:57:56 +02:00
spec_utils . cmb_spectrogram_to_wave ( - v_spec , mp ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
if data [ ' algo ' ] == ' Invert (Normal) ' :
v_spec = specs [ 0 ] - specs [ 1 ]
sf . write ( os . path . join ( ' {} ' . format ( data [ ' export_path ' ] ) , ' {} .wav ' . format ( e [ ' output ' ] ) ) ,
2022-07-06 09:57:56 +02:00
spec_utils . cmb_spectrogram_to_wave ( v_spec , mp ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
text_widget . write ( " Done! \n " )
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
message = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if runtimeerr in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Your PC cannot process this audio file with the chunk size selected. \n Please lower the chunk size and try again. \n \n ' )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' Your PC cannot process this audio file with the chunk size selected. \n Please lower the chunk size and try again. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
message + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if cuda_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
text_widget . write ( f ' Please close any GPU intensive applications and try again. \n ' )
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
f ' Please close any GPU intensive applications and try again. \n ' +
f ' If the error persists, your GPU might not be supported. \n \n ' +
f ' Raw error details: \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if mod_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Application files(s) are missing. \n ' )
text_widget . write ( " \n " + f ' { type ( e ) . __name__ } - " { e } " ' + " \n \n " )
text_widget . write ( f ' Please check for missing files/scripts in the app directory and try again. \n ' )
text_widget . write ( f ' If the error persists, please reinstall application or contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' Application files(s) are missing. \n ' +
f ' Please check for missing files/scripts in the app directory and try again. \n ' +
f ' If the error persists, please reinstall application or contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if file_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Missing file error raised. \n ' )
text_widget . write ( " \n " + f ' { type ( e ) . __name__ } - " { e } " ' + " \n \n " )
text_widget . write ( " \n " + f ' Please address the error and try again. ' + " \n " )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' Missing file error raised. \n ' +
" \n " + f ' Please address the error and try again. ' + " \n " +
f ' If this error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if ffmp_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
2022-05-11 08:42:20 +02:00
text_widget . write ( f ' The input file type is not supported or FFmpeg is missing. \n ' )
text_widget . write ( f ' Please select a file type supported by FFmpeg and try again. \n \n ' )
text_widget . write ( f ' If FFmpeg is missing or not installed, you will only be able to process \" .wav \" files \n until it is available on this system. \n \n ' )
2022-05-11 02:11:40 +02:00
text_widget . write ( f ' See the \" More Info \" tab in the Help Guide. \n \n ' )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
2022-05-11 08:42:20 +02:00
f ' The input file type is not supported or FFmpeg is missing. \n Please select a file type supported by FFmpeg and try again. \n \n ' +
f ' If FFmpeg is missing or not installed, you will only be able to process \" .wav \" files until it is available on this system. \n \n ' +
2022-05-11 02:11:40 +02:00
f ' See the \" More Info \" tab in the Help Guide. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if onnxmissing in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application could not detect this MDX-Net model on your system. \n ' )
text_widget . write ( f ' Please make sure all the models are present in the correct directory. \n ' )
text_widget . write ( f ' If the error persists, please reinstall application or contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application could not detect this MDX-Net model on your system. \n ' +
f ' Please make sure all the models are present in the correct directory. \n ' +
f ' If the error persists, please reinstall application or contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-11 23:05:05 +02:00
if onnxmemerror in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
text_widget . write ( f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' +
f ' If the error persists, your GPU might not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-23 04:47:47 +02:00
if onnxmemerror2 in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
text_widget . write ( f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' +
f ' If the error persists, your GPU might not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-11 02:11:40 +02:00
if sf_write_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Could not write audio file. \n ' )
text_widget . write ( f ' This could be due to low storage on target device or a system permissions issue. \n ' )
text_widget . write ( f " \n For raw error details, go to the Error Log tab in the Help Guide. \n " )
text_widget . write ( f ' \n If the error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' Could not write audio file. \n ' +
f ' This could be due to low storage on target device or a system permissions issue. \n ' +
f ' If the error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
2022-05-23 04:47:47 +02:00
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if systemmemerr in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough system memory to use this \n model. \n \n ' )
text_widget . write ( f ' Please do the following: \n \n 1. Restart this application. \n 2. Ensure any CPU intensive applications are closed. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' Please Note: Intel Pentium and Intel Celeron processors do not work well with \n this application. \n \n ' )
text_widget . write ( f ' If the error persists, the system may not have enough RAM, or your CPU might \n not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application was unable to allocate enough system memory to use this model. \n ' +
f ' Please do the following: \n \n 1. Restart this application. \n 2. Ensure any CPU intensive applications are closed. \n 3. Then try again. \n \n ' +
f ' Please Note: Intel Pentium and Intel Celeron processors do not work well with this application. \n \n ' +
f ' If the error persists, the system may not have enough RAM, or your CPU might \n not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if enex_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to locate a model you selected for this ensemble. \n ' )
text_widget . write ( f ' \n Please do the following to use all compatible models: \n \n 1. Navigate to the \" Updates \" tab in the Help Guide. \n 2. Download and install the v5 Model Expansion Pack. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' If the error persists, please verify all models are present. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' The application was unable to locate a model you selected for this ensemble. \n ' +
f ' \n Please do the following to use all compatible models: \n \n 1. Navigate to the \" Updates \" tab in the Help Guide. \n 2. Download and install the model expansion pack. \n 3. Then try again. \n \n ' +
f ' If the error persists, please verify all models are present. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
2022-05-11 02:11:40 +02:00
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
print ( traceback_text )
print ( type ( e ) . __name__ , e )
print ( message )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: Ensemble Mode \n \n ' +
f ' If this error persists, please contact the developers with the error details. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
tk . messagebox . showerror ( master = window ,
title = ' Error Details ' ,
message = message )
progress_var . set ( 0 )
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n ' )
text_widget . write ( " \n For raw error details, go to the Error Log tab in the Help Guide. \n " )
text_widget . write ( " \n " + f ' Please address the error and try again. ' + " \n " )
text_widget . write ( f ' If this error persists, please contact the developers with the error details. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
update_progress ( * * progress_kwargs ,
step = 1 )
print ( ' Done! ' )
progress_var . set ( 0 )
2022-06-13 09:07:19 +02:00
if not data [ ' ensChoose ' ] == ' Manual Ensemble ' :
2022-05-11 02:11:40 +02:00
text_widget . write ( base_text + f ' Conversions Completed! \n ' )
elif data [ ' algo ' ] == ' Instrumentals (Min Spec) ' and len ( data [ ' input_paths ' ] ) < = 1 or data [ ' algo ' ] == ' Vocals (Max Spec) ' and len ( data [ ' input_paths ' ] ) < = 1 :
text_widget . write ( base_text + f ' Please select 2 or more files to use this feature and try again. \n ' )
elif data [ ' algo ' ] == ' Instrumentals (Min Spec) ' or data [ ' algo ' ] == ' Vocals (Max Spec) ' :
text_widget . write ( base_text + f ' Ensemble Complete! \n ' )
elif len ( data [ ' input_paths ' ] ) != 2 and data [ ' algo ' ] == ' Invert (Spectral) ' or len ( data [ ' input_paths ' ] ) != 2 and data [ ' algo ' ] == ' Invert (Normal) ' :
text_widget . write ( base_text + f ' Please select exactly 2 files to extract difference. \n ' )
elif data [ ' algo ' ] == ' Invert (Spectral) ' or data [ ' algo ' ] == ' Invert (Normal) ' :
text_widget . write ( base_text + f ' Complete! \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' ) # nopep8
torch . cuda . empty_cache ( )
button_widget . configure ( state = tk . NORMAL ) #Enable Button