2022-05-11 02:11:40 +02:00
from datetime import datetime
2022-06-13 09:07:19 +02:00
from demucs . apply import BagOfModels , apply_model
2022-07-23 09:56:57 +02:00
from demucs . hdemucs import HDemucs
from demucs . model_v2 import Demucs
from demucs . pretrained import get_model as _gm
from demucs . tasnet_v2 import ConvTasNet
from demucs . utils import apply_model_v1
from demucs . utils import apply_model_v2
from lib_v5 import spec_utils
from lib_v5 . model_param_init import ModelParameters
2022-05-11 02:11:40 +02:00
from models import get_models , spec_effects
2022-07-23 09:56:57 +02:00
from pathlib import Path
from random import randrange
2022-05-11 02:11:40 +02:00
from tqdm import tqdm
2022-07-23 09:56:57 +02:00
from unittest import skip
import tkinter . ttk as ttk
import tkinter . messagebox
import tkinter . filedialog
import tkinter . simpledialog
import tkinter . font
import tkinter as tk
from tkinter import *
from tkinter . tix import *
import json
import gzip
import hashlib
2022-05-11 02:11:40 +02:00
import librosa
2022-07-23 09:56:57 +02:00
import numpy as np
import onnxruntime as ort
import os
import os . path
import pathlib
2022-05-11 02:11:40 +02:00
import psutil
2022-07-23 09:56:57 +02:00
import pydub
import shutil
import soundfile as sf
import subprocess
import sys
import time
import time # Timer
2022-05-11 02:11:40 +02:00
import tkinter as tk
2022-07-23 09:56:57 +02:00
import torch
2022-05-11 02:11:40 +02:00
import traceback # Error Message Recent Calls
2022-07-23 09:56:57 +02:00
import warnings
import lib_v5 . filelist
2022-06-13 09:07:19 +02:00
2022-07-23 09:56:57 +02:00
#from typing import Literal
2022-05-11 02:11:40 +02:00
class Predictor ( ) :
def __init__ ( self ) :
pass
2022-07-23 09:56:57 +02:00
def mdx_options ( self ) :
"""
Open Advanced MDX Options
"""
self . okVar = tk . IntVar ( )
self . n_fft_scale_set_var = tk . StringVar ( value = ' 6144 ' )
self . dim_f_set_var = tk . StringVar ( value = ' 2048 ' )
self . mdxnetModeltype_var = tk . StringVar ( value = ' Vocals ' )
self . noise_pro_select_set_var = tk . StringVar ( value = ' MDX-NET_Noise_Profile_14_kHz ' )
self . compensate_v_var = tk . StringVar ( value = 1.03597672895 )
top = Toplevel ( )
top . geometry ( " 740x550 " )
window_height = 740
window_width = 550
top . title ( " Specify Parameters " )
top . resizable ( False , False ) # This code helps to disable windows from resizing
top . attributes ( " -topmost " , True )
screen_width = top . winfo_screenwidth ( )
screen_height = top . winfo_screenheight ( )
x_cordinate = int ( ( screen_width / 2 ) - ( window_width / 2 ) )
y_cordinate = int ( ( screen_height / 2 ) - ( window_height / 2 ) )
top . geometry ( " {} x {} + {} + {} " . format ( window_width , window_height , x_cordinate , y_cordinate ) )
# change title bar icon
top . iconbitmap ( ' img \\ UVR-Icon-v2.ico ' )
tabControl = ttk . Notebook ( top )
tabControl . pack ( expand = 1 , fill = " both " )
tabControl . grid_rowconfigure ( 0 , weight = 1 )
tabControl . grid_columnconfigure ( 0 , weight = 1 )
frame0 = Frame ( tabControl , highlightbackground = ' red ' , highlightthicknes = 0 )
frame0 . grid ( row = 0 , column = 0 , padx = 0 , pady = 0 )
frame0 . tkraise ( frame0 )
space_small = ' ' * 20
space_small_1 = ' ' * 10
l0 = tk . Label ( frame0 , text = f ' { space_small } Stem Type { space_small } ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 3 , column = 0 , padx = 0 , pady = 5 )
l0 = ttk . OptionMenu ( frame0 , self . mdxnetModeltype_var , None , ' Vocals ' , ' Instrumental ' , ' Other ' , ' Bass ' , ' Drums ' )
l0 . grid ( row = 4 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' N_FFT Scale ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 5 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = f ' { space_small_1 } (Manual Set) { space_small_1 } ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 5 , column = 1 , padx = 0 , pady = 5 )
self . options_n_fft_scale_Opt = l0 = ttk . OptionMenu ( frame0 , self . n_fft_scale_set_var , None , ' 4096 ' , ' 6144 ' , ' 7680 ' , ' 8192 ' , ' 16384 ' )
self . options_n_fft_scale_Opt
l0 . grid ( row = 6 , column = 0 , padx = 0 , pady = 5 )
self . options_n_fft_scale_Entry = l0 = ttk . Entry ( frame0 , textvariable = self . n_fft_scale_set_var , justify = ' center ' )
self . options_n_fft_scale_Entry
l0 . grid ( row = 6 , column = 1 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Dim_f ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 7 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' (Manual Set) ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 7 , column = 1 , padx = 0 , pady = 5 )
self . options_dim_f_Opt = l0 = ttk . OptionMenu ( frame0 , self . dim_f_set_var , None , ' 2048 ' , ' 3072 ' , ' 4096 ' )
self . options_dim_f_Opt
l0 . grid ( row = 8 , column = 0 , padx = 0 , pady = 5 )
self . options_dim_f_Entry = l0 = ttk . Entry ( frame0 , textvariable = self . dim_f_set_var , justify = ' center ' )
self . options_dim_f_Entry
l0 . grid ( row = 8 , column = 1 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Noise Profile ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 9 , column = 0 , padx = 0 , pady = 5 )
l0 = ttk . OptionMenu ( frame0 , self . noise_pro_select_set_var , None , ' MDX-NET_Noise_Profile_14_kHz ' , ' MDX-NET_Noise_Profile_17_kHz ' , ' MDX-NET_Noise_Profile_Full_Band ' )
l0 . grid ( row = 10 , column = 0 , padx = 0 , pady = 5 )
l0 = tk . Label ( frame0 , text = ' Volume Compensation ' , font = ( " Century Gothic " , " 9 " ) , foreground = ' #13a4c9 ' )
l0 . grid ( row = 11 , column = 0 , padx = 0 , pady = 10 )
self . options_compensate = l0 = ttk . Entry ( frame0 , textvariable = self . compensate_v_var , justify = ' center ' )
self . options_compensate
l0 . grid ( row = 12 , column = 0 , padx = 0 , pady = 0 )
l0 = ttk . Button ( frame0 , text = " Continue " , command = lambda : self . okVar . set ( 1 ) )
l0 . grid ( row = 13 , column = 0 , padx = 0 , pady = 30 )
def stop ( ) :
widget_text . write ( f ' Please configure the ONNX model settings accordingly and try again. \n \n ' )
widget_text . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
gui_progress_bar . set ( 0 )
widget_button . configure ( state = tk . NORMAL ) # Enable Button
top . destroy ( )
return
l0 = ttk . Button ( frame0 , text = " Stop Process " , command = stop )
l0 . grid ( row = 13 , column = 1 , padx = 0 , pady = 30 )
def change_event ( ) :
self . okVar . set ( 1 )
#top.destroy()
pass
top . protocol ( " WM_DELETE_WINDOW " , change_event )
frame0 . wait_variable ( self . okVar )
global n_fft_scale_set
global dim_f_set
global modeltype
global stemset_n
global stem_text_a
global stem_text_b
global source_val
global noise_pro_set
global compensate
global demucs_model_set
stemtype = self . mdxnetModeltype_var . get ( )
if stemtype == ' Vocals ' :
modeltype = ' v '
stemset_n = ' (Vocals) '
source_val = 3
if stemtype == ' Instrumental ' :
modeltype = ' v '
stemset_n = ' (Instrumental) '
source_val = 0
if stemtype == ' Other ' :
modeltype = ' o '
stemset_n = ' (Other) '
source_val = 2
if stemtype == ' Drums ' :
modeltype = ' d '
stemset_n = ' (Drums) '
source_val = 1
if stemtype == ' Bass ' :
modeltype = ' b '
stemset_n = ' (Bass) '
source_val = 0
if stemset_n == ' (Vocals) ' :
stem_text_a = ' Vocals '
stem_text_b = ' Instrumental '
elif stemset_n == ' (Instrumental) ' :
stem_text_a = ' Instrumental '
stem_text_b = ' Vocals '
elif stemset_n == ' (Other) ' :
stem_text_a = ' Other '
stem_text_b = ' the no \" Other \" track '
elif stemset_n == ' (Drums) ' :
stem_text_a = ' Drums '
stem_text_b = ' no \" Drums \" track '
elif stemset_n == ' (Bass) ' :
stem_text_a = ' Bass '
stem_text_b = ' No \" Bass \" track '
else :
stem_text_a = ' Vocals '
stem_text_b = ' Instrumental '
compensate = self . compensate_v_var . get ( )
n_fft_scale_set = int ( self . n_fft_scale_set_var . get ( ) )
dim_f_set = int ( self . dim_f_set_var . get ( ) )
noise_pro_set = self . noise_pro_select_set_var . get ( )
mdx_model_params = {
' modeltype ' : modeltype ,
' stemset_n ' : stemset_n ,
' source_val ' : source_val ,
' compensate ' : compensate ,
' n_fft_scale_set ' : n_fft_scale_set ,
' dim_f_set ' : dim_f_set ,
' noise_pro ' : noise_pro_set ,
}
mdx_model_params_r = json . dumps ( mdx_model_params , indent = 4 )
with open ( f " lib_v5/filelists/model_cache/mdx_model_cache/ { model_hash } .json " , " w " ) as outfile :
outfile . write ( mdx_model_params_r )
if ' UVR ' in demucs_model_set :
if stemset_n == ' (Bass) ' or stemset_n == ' (Drums) ' or stemset_n == ' (Other) ' :
widget_text . write ( base_text + ' The selected Demucs model can only be used with vocal or instrumental stems. \n ' )
widget_text . write ( base_text + ' Please select a 4 stem Demucs model next time. \n ' )
widget_text . write ( base_text + ' Setting Demucs Model to \" mdx_extra \" \n ' )
demucs_model_set = ' mdx_extra '
if stemset_n == ' (Instrumental) ' :
if not ' UVR ' in demucs_model_set :
widget_text . write ( base_text + ' The selected Demucs model cannot be used with this model. \n ' )
widget_text . write ( base_text + ' Only 2 stem Demucs models are compatible with this model. \n ' )
widget_text . write ( base_text + ' Setting Demucs model to \" UVR_Demucs_Model_1 \" . \n \n ' )
demucs_model_set = ' UVR_Demucs_Model_1 '
top . destroy ( )
2022-06-13 09:07:19 +02:00
def prediction_setup ( self ) :
2022-05-23 04:47:47 +02:00
global device
if data [ ' gpu ' ] > = 0 :
2022-06-13 09:07:19 +02:00
device = torch . device ( ' cuda:0 ' if torch . cuda . is_available ( ) else ' cpu ' )
2022-05-23 04:47:47 +02:00
if data [ ' gpu ' ] == - 1 :
device = torch . device ( ' cpu ' )
2022-07-23 09:56:57 +02:00
2022-05-11 02:11:40 +02:00
if data [ ' demucsmodel ' ] :
2022-07-23 09:56:57 +02:00
if demucs_model_version == ' v1 ' :
load_from = " models/Demucs_Models/ " f " { demucs_model_set } "
if str ( load_from ) . endswith ( " .gz " ) :
load_from = gzip . open ( load_from , " rb " )
klass , args , kwargs , state = torch . load ( load_from )
self . demucs = klass ( * args , * * kwargs )
widget_text . write ( base_text + ' Loading Demucs v1 model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
self . demucs . to ( device )
self . demucs . load_state_dict ( state )
widget_text . write ( ' Done! \n ' )
if demucs_model_version == ' v2 ' :
if ' 48 ' in demucs_model_set :
channels = 48
elif ' unittest ' in demucs_model_set :
channels = 4
else :
channels = 64
if ' tasnet ' in demucs_model_set :
self . demucs = ConvTasNet ( sources = [ " drums " , " bass " , " other " , " vocals " ] , X = 10 )
else :
self . demucs = Demucs ( sources = [ " drums " , " bass " , " other " , " vocals " ] , channels = channels )
widget_text . write ( base_text + ' Loading Demucs v2 model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
self . demucs . to ( device )
self . demucs . load_state_dict ( torch . load ( " models/Demucs_Models/ " f " { demucs_model_set } " ) )
widget_text . write ( ' Done! \n ' )
self . demucs . eval ( )
if demucs_model_version == ' v3 ' :
if ' UVR ' in demucs_model_set :
self . demucs = HDemucs ( sources = [ " other " , " vocals " ] )
else :
self . demucs = HDemucs ( sources = [ " drums " , " bass " , " other " , " vocals " ] )
widget_text . write ( base_text + ' Loading Demucs model... ' )
update_progress ( * * progress_kwargs ,
step = 0.05 )
path_d = Path ( ' models/Demucs_Models/v3_repo ' )
#print('What Demucs model was chosen? ', demucs_model_set)
self . demucs = _gm ( name = demucs_model_set , repo = path_d )
self . demucs . to ( device )
self . demucs . eval ( )
widget_text . write ( ' Done! \n ' )
if isinstance ( self . demucs , BagOfModels ) :
widget_text . write ( base_text + f " Selected Demucs model is a bag of { len ( self . demucs . models ) } model(s). \n " )
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
self . onnx_models = { }
c = 0
2022-07-23 09:56:57 +02:00
self . models = get_models ( ' tdf_extra ' , load = False , device = cpu , stems = modeltype , n_fft_scale = int ( n_fft_scale_set ) , dim_f = int ( dim_f_set ) )
2022-06-03 11:08:37 +02:00
if not data [ ' demucs_only ' ] :
widget_text . write ( base_text + ' Loading ONNX model... ' )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = 0.1 )
c + = 1
if data [ ' gpu ' ] > = 0 :
if torch . cuda . is_available ( ) :
run_type = [ ' CUDAExecutionProvider ' ]
else :
data [ ' gpu ' ] = - 1
widget_text . write ( " \n " + base_text + " No NVIDIA GPU detected. Switching to CPU... " )
run_type = [ ' CPUExecutionProvider ' ]
2022-05-23 04:47:47 +02:00
elif data [ ' gpu ' ] == - 1 :
2022-05-11 02:11:40 +02:00
run_type = [ ' CPUExecutionProvider ' ]
2022-05-23 04:47:47 +02:00
2022-07-23 09:56:57 +02:00
print ( ' Selected Model: ' , mdx_model_path )
self . onnx_models [ c ] = ort . InferenceSession ( os . path . join ( mdx_model_path ) , providers = run_type )
2022-06-03 11:08:37 +02:00
if not data [ ' demucs_only ' ] :
widget_text . write ( ' Done! \n ' )
2022-05-11 02:11:40 +02:00
def prediction ( self , m ) :
2022-06-13 09:07:19 +02:00
mix , samplerate = librosa . load ( m , mono = False , sr = 44100 )
2022-07-23 09:56:57 +02:00
#print('print mix: ', mix)
2022-05-11 02:11:40 +02:00
if mix . ndim == 1 :
2022-06-13 09:07:19 +02:00
mix = np . asfortranarray ( [ mix , mix ] )
samplerate = samplerate
2022-05-11 02:11:40 +02:00
mix = mix . T
sources = self . demix ( mix . T )
widget_text . write ( base_text + ' Inferences complete! \n ' )
c = - 1
#Main Save Path
save_path = os . path . dirname ( _basename )
2022-07-23 09:56:57 +02:00
#print('stemset_n: ', stemset_n)
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
#Vocal Path
2022-06-03 11:08:37 +02:00
if stemset_n == ' (Vocals) ' :
vocal_name = ' (Vocals) '
2022-07-23 09:56:57 +02:00
elif stemset_n == ' (Instrumental) ' :
vocal_name = ' (Instrumental) '
2022-06-03 11:08:37 +02:00
elif stemset_n == ' (Other) ' :
vocal_name = ' (Other) '
elif stemset_n == ' (Drums) ' :
vocal_name = ' (Drums) '
elif stemset_n == ' (Bass) ' :
vocal_name = ' (Bass) '
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } ' , )
vocal_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } ' , )
vocal_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } ' , )
else :
vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } ' , )
vocal_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } ' , )
vocal_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } ' , )
#Instrumental Path
2022-06-03 11:08:37 +02:00
if stemset_n == ' (Vocals) ' :
Instrumental_name = ' (Instrumental) '
2022-07-23 09:56:57 +02:00
elif stemset_n == ' (Instrumental) ' :
Instrumental_name = ' (Vocals) '
2022-06-03 11:08:37 +02:00
elif stemset_n == ' (Other) ' :
Instrumental_name = ' (No_Other) '
elif stemset_n == ' (Drums) ' :
Instrumental_name = ' (No_Drums) '
elif stemset_n == ' (Bass) ' :
Instrumental_name = ' (No_Bass) '
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } ' , )
Instrumental_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } ' , )
Instrumental_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } ' , )
else :
Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } ' , )
Instrumental_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } ' , )
Instrumental_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } ' , )
#Non-Reduced Vocal Path
2022-06-03 11:08:37 +02:00
if stemset_n == ' (Vocals) ' :
vocal_name = ' (Vocals) '
elif stemset_n == ' (Other) ' :
vocal_name = ' (Other) '
elif stemset_n == ' (Drums) ' :
vocal_name = ' (Drums) '
elif stemset_n == ' (Bass) ' :
vocal_name = ' (Bass) '
2022-07-23 09:56:57 +02:00
elif stemset_n == ' (Instrumental) ' :
vocal_name = ' (Instrumental) '
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
if data [ ' modelFolder ' ] :
non_reduced_vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } _No_Reduction ' , )
non_reduced_vocal_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } _No_Reduction ' , )
non_reduced_vocal_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _ { model_set_name } _No_Reduction ' , )
else :
non_reduced_vocal_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _No_Reduction ' , )
non_reduced_vocal_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _No_Reduction ' , )
non_reduced_vocal_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { vocal_name } _No_Reduction ' , )
2022-07-04 01:47:33 +02:00
if data [ ' modelFolder ' ] :
non_reduced_Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } _No_Reduction ' , )
2022-07-06 09:57:56 +02:00
non_reduced_Instrumental_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
2022-07-04 01:47:33 +02:00
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } _No_Reduction ' , )
non_reduced_Instrumental_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _ { model_set_name } _No_Reduction ' , )
else :
non_reduced_Instrumental_path = ' {save_path} / {file_name} .wav ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _No_Reduction ' , )
non_reduced_Instrumental_path_mp3 = ' {save_path} / {file_name} .mp3 ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _No_Reduction ' , )
non_reduced_Instrumental_path_flac = ' {save_path} / {file_name} .flac ' . format (
save_path = save_path ,
file_name = f ' { os . path . basename ( _basename ) } _ { Instrumental_name } _No_Reduction ' , )
2022-05-11 02:11:40 +02:00
if os . path . isfile ( non_reduced_vocal_path ) :
file_exists_n = ' there '
else :
file_exists_n = ' not_there '
if os . path . isfile ( vocal_path ) :
file_exists_v = ' there '
else :
file_exists_v = ' not_there '
if os . path . isfile ( Instrumental_path ) :
file_exists_i = ' there '
else :
file_exists_i = ' not_there '
2022-07-23 09:56:57 +02:00
#print('Is there already a voc file there? ', file_exists_v)
2022-05-11 02:11:40 +02:00
if not data [ ' noisereduc_s ' ] == ' None ' :
c + = 1
if not data [ ' demucsmodel ' ] :
if data [ ' inst_only ' ] :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Preparing to save { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-05-11 02:11:40 +02:00
2022-07-06 09:57:56 +02:00
sf . write ( non_reduced_vocal_path , sources [ c ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
widget_text . write ( base_text + ' Performing Noise Reduction... ' )
reduction_sen = float ( int ( data [ ' noisereduc_s ' ] ) / 10 )
subprocess . call ( " lib_v5 \\ sox \\ sox.exe " + ' " ' +
f " { str ( non_reduced_vocal_path ) } " + ' " " ' + f " { str ( vocal_path ) } " + ' " ' +
2022-06-13 09:07:19 +02:00
" noisered lib_v5 \\ sox \\ " + noise_pro_set + " .prof " + f " { reduction_sen } " ,
2022-05-11 02:11:40 +02:00
shell = True , stdout = subprocess . PIPE ,
stdin = subprocess . PIPE , stderr = subprocess . PIPE )
widget_text . write ( ' Done! \n ' )
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
else :
if data [ ' inst_only ' ] :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Preparing { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-05-11 02:11:40 +02:00
2022-06-13 09:07:19 +02:00
if data [ ' demucs_only ' ] :
if ' UVR ' in demucs_model_set :
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Instrumental) ' :
sf . write ( non_reduced_vocal_path , sources [ 0 ] . T , samplerate , subtype = wav_type_set )
else :
sf . write ( non_reduced_vocal_path , sources [ 1 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
else :
2022-07-06 09:57:56 +02:00
sf . write ( non_reduced_vocal_path , sources [ source_val ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
widget_text . write ( base_text + ' Performing Noise Reduction... ' )
2022-06-03 11:08:37 +02:00
reduction_sen = float ( data [ ' noisereduc_s ' ] ) / 10
2022-07-23 09:56:57 +02:00
#print(noise_pro_set)
2022-05-11 02:11:40 +02:00
subprocess . call ( " lib_v5 \\ sox \\ sox.exe " + ' " ' +
f " { str ( non_reduced_vocal_path ) } " + ' " " ' + f " { str ( vocal_path ) } " + ' " ' +
2022-06-06 22:44:20 +02:00
" noisered lib_v5 \\ sox \\ " + noise_pro_set + " .prof " + f " { reduction_sen } " ,
2022-05-11 02:11:40 +02:00
shell = True , stdout = subprocess . PIPE ,
stdin = subprocess . PIPE , stderr = subprocess . PIPE )
update_progress ( * * progress_kwargs ,
step = ( 0.95 ) )
widget_text . write ( ' Done! \n ' )
else :
c + = 1
if not data [ ' demucsmodel ' ] :
if data [ ' inst_only ' ] :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Preparing { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ c ] . T , samplerate , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
else :
if data [ ' inst_only ' ] :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Preparing { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
else :
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_a } ... ' )
2022-06-13 09:07:19 +02:00
if data [ ' demucs_only ' ] :
if ' UVR ' in demucs_model_set :
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Instrumental) ' :
sf . write ( vocal_path , sources [ 0 ] . T , samplerate , subtype = wav_type_set )
else :
sf . write ( vocal_path , sources [ 1 ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
else :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ source_val ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
else :
2022-07-06 09:57:56 +02:00
sf . write ( vocal_path , sources [ source_val ] . T , samplerate , subtype = wav_type_set )
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 0.9 ) )
widget_text . write ( ' Done! \n ' )
if data [ ' voc_only ' ] and not data [ ' inst_only ' ] :
pass
else :
2022-07-04 01:47:33 +02:00
if not data [ ' noisereduc_s ' ] == ' None ' :
if data [ ' nophaseinst ' ] :
finalfiles = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : [ str ( music_file ) , non_reduced_vocal_path ] ,
}
]
else :
finalfiles = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : [ str ( music_file ) , vocal_path ] ,
}
]
else :
finalfiles = [
{
' model_params ' : ' lib_v5/modelparams/1band_sr44100_hl512.json ' ,
' files ' : [ str ( music_file ) , vocal_path ] ,
}
]
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + f ' Saving { stem_text_b } ... ' )
2022-05-11 02:11:40 +02:00
for i , e in tqdm ( enumerate ( finalfiles ) ) :
wave , specs = { } , { }
mp = ModelParameters ( e [ ' model_params ' ] )
for i in range ( len ( e [ ' files ' ] ) ) :
spec = { }
for d in range ( len ( mp . param [ ' band ' ] ) , 0 , - 1 ) :
bp = mp . param [ ' band ' ] [ d ]
if d == len ( mp . param [ ' band ' ] ) : # high-end band
wave [ d ] , _ = librosa . load (
e [ ' files ' ] [ i ] , bp [ ' sr ' ] , False , dtype = np . float32 , res_type = bp [ ' res_type ' ] )
if len ( wave [ d ] . shape ) == 1 : # mono to stereo
wave [ d ] = np . array ( [ wave [ d ] , wave [ d ] ] )
else : # lower bands
wave [ d ] = librosa . resample ( wave [ d + 1 ] , mp . param [ ' band ' ] [ d + 1 ] [ ' sr ' ] , bp [ ' sr ' ] , res_type = bp [ ' res_type ' ] )
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
spec [ d ] = spec_utils . wave_to_spectrogram ( wave [ d ] , bp [ ' hl ' ] , bp [ ' n_fft ' ] , mp . param [ ' mid_side ' ] , mp . param [ ' mid_side_b2 ' ] , mp . param [ ' reverse ' ] )
specs [ i ] = spec_utils . combine_spectrograms ( spec , mp )
del wave
ln = min ( [ specs [ 0 ] . shape [ 2 ] , specs [ 1 ] . shape [ 2 ] ] )
specs [ 0 ] = specs [ 0 ] [ : , : , : ln ]
specs [ 1 ] = specs [ 1 ] [ : , : , : ln ]
X_mag = np . abs ( specs [ 0 ] )
y_mag = np . abs ( specs [ 1 ] )
max_mag = np . where ( X_mag > = y_mag , X_mag , y_mag )
v_spec = specs [ 1 ] - max_mag * np . exp ( 1. j * np . angle ( specs [ 0 ] ) )
2022-07-06 09:57:56 +02:00
2022-05-11 02:11:40 +02:00
update_progress ( * * progress_kwargs ,
step = ( 1 ) )
2022-07-04 01:47:33 +02:00
if not data [ ' noisereduc_s ' ] == ' None ' :
if data [ ' nophaseinst ' ] :
2022-07-06 09:57:56 +02:00
sf . write ( non_reduced_Instrumental_path , normalization_set ( spec_utils . cmb_spectrogram_to_wave ( - v_spec , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-05-11 02:11:40 +02:00
2022-07-04 01:47:33 +02:00
reduction_sen = float ( data [ ' noisereduc_s ' ] ) / 10
2022-07-23 09:56:57 +02:00
#print(noise_pro_set)
2022-07-04 01:47:33 +02:00
subprocess . call ( " lib_v5 \\ sox \\ sox.exe " + ' " ' +
f " { str ( non_reduced_Instrumental_path ) } " + ' " " ' + f " { str ( Instrumental_path ) } " + ' " ' +
" noisered lib_v5 \\ sox \\ " + noise_pro_set + " .prof " + f " { reduction_sen } " ,
shell = True , stdout = subprocess . PIPE ,
stdin = subprocess . PIPE , stderr = subprocess . PIPE )
else :
2022-07-06 09:57:56 +02:00
sf . write ( Instrumental_path , normalization_set ( spec_utils . cmb_spectrogram_to_wave ( - v_spec , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-07-04 01:47:33 +02:00
else :
2022-07-06 09:57:56 +02:00
sf . write ( Instrumental_path , normalization_set ( spec_utils . cmb_spectrogram_to_wave ( - v_spec , mp ) ) , mp . param [ ' sr ' ] , subtype = wav_type_set )
2022-07-04 01:47:33 +02:00
2022-05-11 02:11:40 +02:00
if data [ ' inst_only ' ] :
if file_exists_v == ' there ' :
pass
else :
try :
os . remove ( vocal_path )
except :
pass
widget_text . write ( ' Done! \n ' )
if data [ ' saveFormat ' ] == ' Mp3 ' :
try :
2022-07-04 01:47:33 +02:00
2022-05-11 02:11:40 +02:00
if data [ ' inst_only ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
if not data [ ' nophaseinst ' ] :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_Instrumental_path )
2022-07-06 09:57:56 +02:00
musfile . export ( non_reduced_Instrumental_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-07-04 01:47:33 +02:00
try :
os . remove ( non_reduced_Instrumental_path )
except :
pass
2022-05-11 02:11:40 +02:00
pass
else :
musfile = pydub . AudioSegment . from_wav ( vocal_path )
2022-07-06 09:57:56 +02:00
musfile . export ( vocal_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
if file_exists_v == ' there ' :
pass
else :
try :
os . remove ( vocal_path )
except :
pass
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
if not data [ ' nophaseinst ' ] :
pass
else :
if data [ ' voc_only ' ] == True :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_Instrumental_path )
2022-07-06 09:57:56 +02:00
musfile . export ( non_reduced_Instrumental_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-07-04 01:47:33 +02:00
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_Instrumental_path )
except :
pass
2022-05-11 02:11:40 +02:00
if data [ ' voc_only ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
musfile = pydub . AudioSegment . from_wav ( non_reduced_vocal_path )
2022-07-06 09:57:56 +02:00
musfile . export ( non_reduced_vocal_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-07-04 01:47:33 +02:00
try :
os . remove ( non_reduced_vocal_path )
except :
pass
2022-05-11 02:11:40 +02:00
pass
else :
musfile = pydub . AudioSegment . from_wav ( Instrumental_path )
2022-07-06 09:57:56 +02:00
musfile . export ( Instrumental_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
if file_exists_i == ' there ' :
pass
else :
try :
os . remove ( Instrumental_path )
except :
2022-07-04 01:47:33 +02:00
pass
2022-05-11 02:11:40 +02:00
if data [ ' non_red ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' inst_only ' ] == True :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_vocal_path )
2022-07-06 09:57:56 +02:00
musfile . export ( non_reduced_vocal_path_mp3 , format = " mp3 " , bitrate = mp3_bit_set )
2022-05-11 02:11:40 +02:00
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
widget_text . write ( base_text + ' Failed to save output(s) as Mp3(s). \n ' )
widget_text . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
widget_text . write ( base_text + ' Moving on... \n ' )
else :
widget_text . write ( base_text + ' Failed to save output(s) as Mp3(s). \n ' )
widget_text . write ( base_text + ' Please check error log. \n ' )
widget_text . write ( base_text + ' Moving on... \n ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while attempting to save file as mp3 " { os . path . basename ( music_file ) } " : \n \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
if data [ ' saveFormat ' ] == ' Flac ' :
try :
if data [ ' inst_only ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
if not data [ ' nophaseinst ' ] :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_Instrumental_path )
musfile . export ( non_reduced_Instrumental_path_flac , format = " flac " )
try :
os . remove ( non_reduced_Instrumental_path )
except :
pass
2022-05-11 02:11:40 +02:00
pass
else :
musfile = pydub . AudioSegment . from_wav ( vocal_path )
musfile . export ( vocal_path_flac , format = " flac " )
if file_exists_v == ' there ' :
pass
else :
try :
os . remove ( vocal_path )
except :
pass
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
if not data [ ' nophaseinst ' ] :
pass
else :
if data [ ' voc_only ' ] == True :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_Instrumental_path )
musfile . export ( non_reduced_Instrumental_path_flac , format = " flac " )
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_Instrumental_path )
except :
pass
2022-05-11 02:11:40 +02:00
if data [ ' voc_only ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' non_red ' ] == True :
musfile = pydub . AudioSegment . from_wav ( non_reduced_vocal_path )
musfile . export ( non_reduced_vocal_path_flac , format = " flac " )
try :
os . remove ( non_reduced_vocal_path )
except :
pass
2022-05-11 02:11:40 +02:00
pass
else :
musfile = pydub . AudioSegment . from_wav ( Instrumental_path )
musfile . export ( Instrumental_path_flac , format = " flac " )
if file_exists_i == ' there ' :
pass
else :
try :
os . remove ( Instrumental_path )
except :
pass
if data [ ' non_red ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' inst_only ' ] == True :
pass
else :
musfile = pydub . AudioSegment . from_wav ( non_reduced_vocal_path )
musfile . export ( non_reduced_vocal_path_flac , format = " flac " )
2022-05-11 02:11:40 +02:00
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
errmessage = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if " ffmpeg " in errmessage :
widget_text . write ( base_text + ' Failed to save output(s) as Flac(s). \n ' )
widget_text . write ( base_text + ' FFmpeg might be missing or corrupted, please check error log. \n ' )
widget_text . write ( base_text + ' Moving on... \n ' )
else :
widget_text . write ( base_text + ' Failed to save output(s) as Flac(s). \n ' )
widget_text . write ( base_text + ' Please check error log. \n ' )
widget_text . write ( base_text + ' Moving on... \n ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while attempting to save file as flac " { os . path . basename ( music_file ) } " : \n \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' FFmpeg might be missing or corrupted. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
errmessage + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
if data [ ' noisereduc_s ' ] == ' None ' :
pass
elif data [ ' non_red ' ] == True :
2022-07-04 01:47:33 +02:00
if data [ ' inst_only ' ] :
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
2022-05-11 02:11:40 +02:00
pass
elif data [ ' inst_only ' ] :
if file_exists_n == ' there ' :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
except :
pass
else :
try :
os . remove ( non_reduced_vocal_path )
2022-07-04 01:47:33 +02:00
os . remove ( non_reduced_Instrumental_path )
2022-05-11 02:11:40 +02:00
except :
pass
2022-07-23 09:56:57 +02:00
widget_text . write ( base_text + ' Completed Separation! \n ' )
2022-05-11 02:11:40 +02:00
def demix ( self , mix ) :
# 1 = demucs only
# 0 = onnx only
if data [ ' chunks ' ] == ' Full ' :
chunk_set = 0
else :
chunk_set = data [ ' chunks ' ]
if data [ ' chunks ' ] == ' Auto ' :
if data [ ' gpu ' ] == 0 :
try :
gpu_mem = round ( torch . cuda . get_device_properties ( 0 ) . total_memory / 1.074e+9 )
except :
widget_text . write ( base_text + ' NVIDIA GPU Required for conversion! \n ' )
2022-05-23 04:47:47 +02:00
if int ( gpu_mem ) < = int ( 6 ) :
2022-05-11 02:11:40 +02:00
chunk_set = int ( 5 )
widget_text . write ( base_text + ' Chunk size auto-set to 5... \n ' )
2022-05-23 04:47:47 +02:00
if gpu_mem in [ 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ] :
chunk_set = int ( 10 )
widget_text . write ( base_text + ' Chunk size auto-set to 10... \n ' )
if int ( gpu_mem ) > = int ( 16 ) :
2022-05-11 02:11:40 +02:00
chunk_set = int ( 40 )
widget_text . write ( base_text + ' Chunk size auto-set to 40... \n ' )
if data [ ' gpu ' ] == - 1 :
sys_mem = psutil . virtual_memory ( ) . total >> 30
if int ( sys_mem ) < = int ( 4 ) :
chunk_set = int ( 1 )
widget_text . write ( base_text + ' Chunk size auto-set to 1... \n ' )
if sys_mem in [ 5 , 6 , 7 , 8 ] :
chunk_set = int ( 10 )
widget_text . write ( base_text + ' Chunk size auto-set to 10... \n ' )
if sys_mem in [ 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ] :
chunk_set = int ( 25 )
widget_text . write ( base_text + ' Chunk size auto-set to 25... \n ' )
if int ( sys_mem ) > = int ( 17 ) :
chunk_set = int ( 60 )
widget_text . write ( base_text + ' Chunk size auto-set to 60... \n ' )
elif data [ ' chunks ' ] == ' Full ' :
chunk_set = 0
widget_text . write ( base_text + " Chunk size set to full... \n " )
else :
chunk_set = int ( data [ ' chunks ' ] )
widget_text . write ( base_text + " Chunk size user-set to " f " { chunk_set } ... \n " )
samples = mix . shape [ - 1 ]
margin = margin_set
chunk_size = chunk_set * 44100
assert not margin == 0 , ' margin cannot be zero! '
if margin > chunk_size :
margin = chunk_size
b = np . array ( [ [ [ 0.5 ] ] , [ [ 0.5 ] ] , [ [ 0.7 ] ] , [ [ 0.9 ] ] ] )
segmented_mix = { }
if chunk_set == 0 or samples < chunk_size :
chunk_size = samples
counter = - 1
for skip in range ( 0 , samples , chunk_size ) :
counter + = 1
s_margin = 0 if counter == 0 else margin
end = min ( skip + chunk_size + margin , samples )
start = skip - s_margin
segmented_mix [ skip ] = mix [ : , start : end ] . copy ( )
if end == samples :
break
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
if not data [ ' demucsmodel ' ] :
sources = self . demix_base ( segmented_mix , margin_size = margin )
2022-06-03 11:08:37 +02:00
elif data [ ' demucs_only ' ] :
2022-06-13 09:07:19 +02:00
if split_mode == True :
sources = self . demix_demucs_split ( mix )
if split_mode == False :
sources = self . demix_demucs ( segmented_mix , margin_size = margin )
2022-05-11 02:11:40 +02:00
else : # both, apply spec effects
base_out = self . demix_base ( segmented_mix , margin_size = margin )
2022-07-23 09:56:57 +02:00
#print(split_mode)
if demucs_model_version == ' v1 ' :
demucs_out = self . demix_demucs_v1 ( segmented_mix , margin_size = margin )
if demucs_model_version == ' v2 ' :
demucs_out = self . demix_demucs_v2 ( segmented_mix , margin_size = margin )
if demucs_model_version == ' v3 ' :
if split_mode == True :
demucs_out = self . demix_demucs_split ( mix )
if split_mode == False :
demucs_out = self . demix_demucs ( segmented_mix , margin_size = margin )
2022-05-11 02:11:40 +02:00
nan_count = np . count_nonzero ( np . isnan ( demucs_out ) ) + np . count_nonzero ( np . isnan ( base_out ) )
if nan_count > 0 :
print ( ' Warning: there are {} nan values in the array(s). ' . format ( nan_count ) )
demucs_out , base_out = np . nan_to_num ( demucs_out ) , np . nan_to_num ( base_out )
sources = { }
2022-07-23 09:56:57 +02:00
#print(data['mixing'])
2022-06-13 09:07:19 +02:00
if ' UVR ' in demucs_model_set :
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Instrumental) ' :
sources [ source_val ] = ( spec_effects ( wave = [ demucs_out [ 0 ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
value = b [ source_val ] ) * float ( compensate ) ) # compensation
else :
sources [ source_val ] = ( spec_effects ( wave = [ demucs_out [ 1 ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
value = b [ source_val ] ) * float ( compensate ) ) # compensation
2022-06-13 09:07:19 +02:00
else :
sources [ source_val ] = ( spec_effects ( wave = [ demucs_out [ source_val ] , base_out [ 0 ] ] ,
algorithm = data [ ' mixing ' ] ,
2022-07-04 01:47:33 +02:00
value = b [ source_val ] ) * float ( compensate ) ) # compensation
2022-07-06 09:57:56 +02:00
if not data [ ' demucsmodel ' ] :
return sources * float ( compensate )
else :
return sources
2022-05-11 02:11:40 +02:00
def demix_base ( self , mixes , margin_size ) :
chunked_sources = [ ]
onnxitera = len ( mixes )
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text . write ( base_text + " Running ONNX Inference... \n " )
widget_text . write ( base_text + " Processing " f " { onnxitera } slices... " )
print ( ' Running ONNX Inference... ' )
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
for mix in mixes :
gui_progress_bar_onnx + = 1
if data [ ' demucsmodel ' ] :
update_progress ( * * progress_kwargs ,
step = ( 0.1 + ( 0.5 / onnxitera_calc * gui_progress_bar_onnx ) ) )
else :
update_progress ( * * progress_kwargs ,
step = ( 0.1 + ( 0.9 / onnxitera * gui_progress_bar_onnx ) ) )
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
cmix = mixes [ mix ]
sources = [ ]
n_sample = cmix . shape [ 1 ]
mod = 0
for model in self . models :
mod + = 1
trim = model . n_fft / / 2
gen_size = model . chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np . concatenate ( ( np . zeros ( ( 2 , trim ) ) , cmix , np . zeros ( ( 2 , pad ) ) , np . zeros ( ( 2 , trim ) ) ) , 1 )
mix_waves = [ ]
i = 0
while i < n_sample + pad :
waves = np . array ( mix_p [ : , i : i + model . chunk_size ] )
mix_waves . append ( waves )
i + = gen_size
mix_waves = torch . tensor ( mix_waves , dtype = torch . float32 ) . to ( cpu )
with torch . no_grad ( ) :
_ort = self . onnx_models [ mod ]
spek = model . stft ( mix_waves )
tar_waves = model . istft ( torch . tensor ( _ort . run ( None , { ' input ' : spek . cpu ( ) . numpy ( ) } ) [ 0 ] ) ) #.cpu()
tar_signal = tar_waves [ : , : , trim : - trim ] . transpose ( 0 , 1 ) . reshape ( 2 , - 1 ) . numpy ( ) [ : , : - pad ]
start = 0 if mix == 0 else margin_size
end = None if mix == list ( mixes . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
sources . append ( tar_signal [ : , start : end ] )
chunked_sources . append ( sources )
_sources = np . concatenate ( chunked_sources , axis = - 1 )
del self . onnx_models
widget_text . write ( ' Done! \n ' )
return _sources
def demix_demucs ( self , mix , margin_size ) :
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-05-11 02:11:40 +02:00
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
2022-06-13 09:07:19 +02:00
widget_text . write ( base_text + " Split Mode is off. (Chunks enabled for Demucs Model) \n " )
2022-05-11 02:11:40 +02:00
widget_text . write ( base_text + " Running Demucs Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
2022-07-23 09:56:57 +02:00
#print(split_mode)
2022-06-13 09:07:19 +02:00
sources = apply_model ( self . demucs , cmix [ None ] , split = split_mode , device = device , overlap = overlap_set , shifts = shift_set , progress = False ) [ 0 ]
2022-05-11 02:11:40 +02:00
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
2022-07-23 09:56:57 +02:00
#print('the demucs model is done running')
2022-07-04 01:47:33 +02:00
2022-05-11 02:11:40 +02:00
return sources
2022-06-13 09:07:19 +02:00
def demix_demucs_split ( self , mix ) :
2022-07-23 09:56:57 +02:00
#print('shift_set ', shift_set)
2022-06-13 09:07:19 +02:00
widget_text . write ( base_text + " Split Mode is on. (Chunks disabled for Demucs Model) \n " )
widget_text . write ( base_text + " Running Demucs Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
mix = torch . tensor ( mix , dtype = torch . float32 )
ref = mix . mean ( 0 )
mix = ( mix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model ( self . demucs , mix [ None ] , split = split_mode , device = device , overlap = overlap_set , shifts = shift_set , progress = False ) [ 0 ]
widget_text . write ( ' Done! \n ' )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
2022-07-04 01:47:33 +02:00
2022-07-23 09:56:57 +02:00
#print('the demucs model is done running')
2022-07-04 01:47:33 +02:00
2022-06-13 09:07:19 +02:00
return sources
2022-07-23 09:56:57 +02:00
def demix_demucs_v1 ( self , mix , margin_size ) :
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text . write ( base_text + " Running Demucs v1 Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model_v1 ( self . demucs , cmix . to ( device ) , split = split_mode , shifts = shift_set )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
return sources
def demix_demucs_v2 ( self , mix , margin_size ) :
processed = { }
demucsitera = len ( mix )
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text . write ( base_text + " Running Demucs v2 Inference... \n " )
widget_text . write ( base_text + " Processing " f " { len ( mix ) } slices... " )
print ( ' Running Demucs Inference... ' )
for nmix in mix :
gui_progress_bar_demucs + = 1
update_progress ( * * progress_kwargs ,
step = ( 0.35 + ( 1.05 / demucsitera_calc * gui_progress_bar_demucs ) ) )
cmix = mix [ nmix ]
cmix = torch . tensor ( cmix , dtype = torch . float32 )
ref = cmix . mean ( 0 )
cmix = ( cmix - ref . mean ( ) ) / ref . std ( )
with torch . no_grad ( ) :
sources = apply_model_v2 ( self . demucs , cmix . to ( device ) , split = split_mode , overlap = overlap_set , shifts = shift_set )
sources = ( sources * ref . std ( ) + ref . mean ( ) ) . cpu ( ) . numpy ( )
sources [ [ 0 , 1 ] ] = sources [ [ 1 , 0 ] ]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list ( mix . keys ( ) ) [ : : - 1 ] [ 0 ] else - margin_size
if margin_size == 0 :
end = None
processed [ nmix ] = sources [ : , : , start : end ] . copy ( )
sources = list ( processed . values ( ) )
sources = np . concatenate ( sources , axis = - 1 )
widget_text . write ( ' Done! \n ' )
return sources
2022-05-11 02:11:40 +02:00
data = {
2022-07-23 09:56:57 +02:00
' autocompensate ' : True ,
' aud_mdx ' : True ,
' bit ' : ' ' ,
' chunks ' : 10 ,
' compensate ' : 1.03597672895 ,
' demucs_only ' : False ,
2022-07-04 03:18:27 +02:00
' demucsmodel ' : False ,
2022-07-23 09:56:57 +02:00
' DemucsModel_MDX ' : ' UVR_Demucs_Model_1 ' ,
' dim_f ' : 2048 ,
' export_path ' : None ,
' flactype ' : ' PCM_16 ' ,
2022-05-11 02:11:40 +02:00
' gpu ' : - 1 ,
2022-07-23 09:56:57 +02:00
' input_paths ' : None ,
2022-05-11 02:11:40 +02:00
' inst_only ' : False ,
2022-07-23 09:56:57 +02:00
' margin ' : 44100 ,
' mdxnetModel ' : ' UVR-MDX-NET Main ' ,
' mdxnetModeltype ' : ' Vocals (Custom) ' ,
' mixing ' : ' Default ' ,
' modelFolder ' : False ,
' mp3bit ' : ' 320k ' ,
2022-06-02 11:36:38 +02:00
' n_fft_scale ' : 6144 ,
2022-06-06 22:44:20 +02:00
' noise_pro_select ' : ' Auto Select ' ,
2022-07-23 09:56:57 +02:00
' noisereduc_s ' : 3 ,
' non_red ' : False ,
' nophaseinst ' : True ,
' normalize ' : False ,
2022-06-03 11:08:37 +02:00
' overlap ' : 0.5 ,
2022-07-23 09:56:57 +02:00
' saveFormat ' : ' Wav ' ,
2022-06-03 11:08:37 +02:00
' shifts ' : 0 ,
2022-06-13 09:07:19 +02:00
' split_mode ' : False ,
2022-07-23 09:56:57 +02:00
' voc_only ' : False ,
2022-07-06 09:57:56 +02:00
' wavtype ' : ' PCM_16 ' ,
2022-05-11 02:11:40 +02:00
}
2022-07-23 09:56:57 +02:00
2022-05-11 02:11:40 +02:00
default_chunks = data [ ' chunks ' ]
default_noisereduc_s = data [ ' noisereduc_s ' ]
def update_progress ( progress_var , total_files , file_num , step : float = 1 ) :
""" Calculate the progress for the progress widget in the GUI """
base = ( 100 / total_files )
progress = base * ( file_num - 1 )
progress + = base * step
progress_var . set ( progress )
def get_baseText ( total_files , file_num ) :
""" Create the base text for the command widget """
text = ' File {file_num} / {total_files} ' . format ( file_num = file_num ,
total_files = total_files )
return text
warnings . filterwarnings ( " ignore " )
cpu = torch . device ( ' cpu ' )
def hide_opt ( ) :
with open ( os . devnull , " w " ) as devnull :
old_stdout = sys . stdout
sys . stdout = devnull
try :
yield
finally :
sys . stdout = old_stdout
2022-07-23 09:56:57 +02:00
def main ( window : tk . Wm ,
text_widget : tk . Text ,
button_widget : tk . Button ,
progress_var : tk . Variable ,
2022-05-11 02:11:40 +02:00
* * kwargs : dict ) :
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global default_noisereduc_s
global _basename
global _mixture
2022-06-02 02:00:43 +02:00
global modeltype
2022-06-02 11:36:38 +02:00
global n_fft_scale_set
global dim_f_set
2022-05-11 02:11:40 +02:00
global progress_kwargs
global base_text
global model_set_name
2022-06-03 11:08:37 +02:00
global stemset_n
2022-07-23 09:56:57 +02:00
global stem_text_a
global stem_text_b
2022-06-06 22:44:20 +02:00
global noise_pro_set
2022-06-13 09:07:19 +02:00
global demucs_model_set
2022-07-04 01:47:33 +02:00
global autocompensate
global compensate
2022-06-03 11:08:37 +02:00
global channel_set
global margin_set
global overlap_set
global shift_set
global source_val
2022-06-13 09:07:19 +02:00
global split_mode
2022-07-04 01:47:33 +02:00
global demucs_model_set
2022-07-06 09:57:56 +02:00
global wav_type_set
global flac_type_set
global mp3_bit_set
global normalization_set
2022-07-23 09:56:57 +02:00
global demucs_model_version
global mdx_model_path
global widget_button
global stime
global model_hash
2022-06-13 09:07:19 +02:00
global demucs_switch
2022-05-11 02:11:40 +02:00
2022-07-04 01:47:33 +02:00
2022-05-11 02:11:40 +02:00
# Update default settings
default_chunks = data [ ' chunks ' ]
default_noisereduc_s = data [ ' noisereduc_s ' ]
widget_text = text_widget
gui_progress_bar = progress_var
2022-07-23 09:56:57 +02:00
widget_button = button_widget
2022-05-11 02:11:40 +02:00
#Error Handling
onnxmissing = " [ONNXRuntimeError] : 3 : NO_SUCHFILE "
2022-05-11 23:05:05 +02:00
onnxmemerror = " onnxruntime::CudaCall CUDA failure 2: out of memory "
2022-05-23 04:47:47 +02:00
onnxmemerror2 = " onnxruntime::BFCArena::AllocateRawInternal "
systemmemerr = " DefaultCPUAllocator: not enough memory "
2022-05-11 02:11:40 +02:00
runtimeerr = " CUDNN error executing cudnnSetTensorNdDescriptor "
cuda_err = " CUDA out of memory "
mod_err = " ModuleNotFoundError "
file_err = " FileNotFoundError "
ffmp_err = """ audioread \ __init__.py " , line 116, in audio_open """
sf_write_err = " sf.write "
2022-06-06 22:44:20 +02:00
model_adv_set_err = " Got invalid dimensions for input "
2022-05-11 02:11:40 +02:00
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' No errors to report at this time. ' + f ' \n \n Last Process Method Used: MDX-Net ' +
f ' \n Last Conversion Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
data . update ( kwargs )
2022-07-23 09:56:57 +02:00
if data [ ' DemucsModel_MDX ' ] == " Tasnet v1 " :
demucs_model_set_name = ' tasnet.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet_extra v1 " :
demucs_model_set_name = ' tasnet_extra.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v1 " :
demucs_model_set_name = ' demucs.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v1.gz " :
demucs_model_set_name = ' demucs.th.gz '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v1 " :
demucs_model_set_name = ' demucs_extra.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v1.gz " :
demucs_model_set_name = ' demucs_extra.th.gz '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Light v1 " :
demucs_model_set_name = ' light.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Light v1.gz " :
demucs_model_set_name = ' light.th.gz '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Light_extra v1 " :
demucs_model_set_name = ' light_extra.th '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Light_extra v1.gz " :
demucs_model_set_name = ' light_extra.th.gz '
demucs_model_version = ' v1 '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet v2 " :
demucs_model_set_name = ' tasnet-beb46fac.th '
demucs_model_version = ' v2 '
elif data [ ' DemucsModel_MDX ' ] == " Tasnet_extra v2 " :
demucs_model_set_name = ' tasnet_extra-df3777b2.th '
demucs_model_version = ' v2 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs48_hq v2 " :
demucs_model_set_name = ' demucs48_hq-28a1282c.th '
demucs_model_version = ' v2 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs v2 " :
demucs_model_set_name = ' demucs-e07c671f.th '
demucs_model_version = ' v2 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_extra v2 " :
demucs_model_set_name = ' demucs_extra-3646af93.th '
demucs_model_version = ' v2 '
elif data [ ' DemucsModel_MDX ' ] == " Demucs_unittest v2 " :
demucs_model_set_name = ' demucs_unittest-09ebc15f.th '
demucs_model_version = ' v2 '
elif ' .ckpt ' in data [ ' DemucsModel_MDX ' ] and ' v2 ' in data [ ' DemucsModel_MDX ' ] :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
demucs_model_version = ' v2 '
elif ' .ckpt ' in data [ ' DemucsModel_MDX ' ] and ' v1 ' in data [ ' DemucsModel_MDX ' ] :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
demucs_model_version = ' v1 '
elif ' .gz ' in data [ ' DemucsModel_MDX ' ] :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
demucs_model_version = ' v1 '
else :
demucs_model_set_name = data [ ' DemucsModel_MDX ' ]
demucs_model_version = ' v3 '
2022-07-06 09:57:56 +02:00
2022-07-23 09:56:57 +02:00
autocompensate = data [ ' autocompensate ' ]
2022-06-03 11:08:37 +02:00
2022-07-23 09:56:57 +02:00
model_set_name = data [ ' mdxnetModel ' ]
if model_set_name == ' UVR-MDX-NET 1 ' :
mdx_model_name = ' UVR_MDXNET_1_9703 '
elif model_set_name == ' UVR-MDX-NET 2 ' :
mdx_model_name = ' UVR_MDXNET_2_9682 '
elif model_set_name == ' UVR-MDX-NET 3 ' :
mdx_model_name = ' UVR_MDXNET_3_9662 '
elif model_set_name == ' UVR-MDX-NET Karaoke ' :
mdx_model_name = ' UVR_MDXNET_KARA '
elif model_set_name == ' UVR-MDX-NET Main ' :
mdx_model_name = ' UVR_MDXNET_Main '
2022-06-13 09:07:19 +02:00
else :
2022-07-23 09:56:57 +02:00
mdx_model_name = data [ ' mdxnetModel ' ]
mdx_model_path = f ' models/MDX_Net_Models/ { mdx_model_name } .onnx '
model_hash = hashlib . md5 ( open ( mdx_model_path , ' rb ' ) . read ( ) ) . hexdigest ( )
model_params = [ ]
model_params = lib_v5 . filelist . provide_mdx_model_param_name ( model_hash )
modeltype = model_params [ 0 ]
noise_pro = model_params [ 1 ]
stemset_n = model_params [ 2 ]
compensate_set = model_params [ 3 ]
source_val = model_params [ 4 ]
n_fft_scale_set = model_params [ 5 ]
dim_f_set = model_params [ 6 ]
if not data [ ' aud_mdx ' ] :
if data [ ' mdxnetModeltype ' ] == ' Vocals (Custom) ' :
modeltype = ' v '
source_val = 3
stemset_n = ' (Vocals) '
n_fft_scale_set = data [ ' n_fft_scale ' ]
dim_f_set = data [ ' dim_f ' ]
if data [ ' mdxnetModeltype ' ] == ' Instrumental (Custom) ' :
modeltype = ' v '
source_val = 0
stemset_n = ' (Instrumental) '
n_fft_scale_set = data [ ' n_fft_scale ' ]
dim_f_set = data [ ' dim_f ' ]
if data [ ' mdxnetModeltype ' ] == ' Other (Custom) ' :
modeltype = ' v '
source_val = 2
stemset_n = ' (Other) '
n_fft_scale_set = data [ ' n_fft_scale ' ]
dim_f_set = data [ ' dim_f ' ]
if data [ ' mdxnetModeltype ' ] == ' Drums (Custom) ' :
modeltype = ' v '
source_val = 1
stemset_n = ' (Drums) '
n_fft_scale_set = data [ ' n_fft_scale ' ]
dim_f_set = data [ ' dim_f ' ]
if data [ ' mdxnetModeltype ' ] == ' Bass (Custom) ' :
modeltype = ' v '
source_val = 0
stemset_n = ' (Bass) '
n_fft_scale_set = data [ ' n_fft_scale ' ]
dim_f_set = data [ ' dim_f ' ]
if stemset_n == ' (Vocals) ' :
stem_text_a = ' Vocals '
stem_text_b = ' Instrumental '
elif stemset_n == ' (Instrumental) ' :
stem_text_a = ' Instrumental '
stem_text_b = ' Vocals '
elif stemset_n == ' (Other) ' :
stem_text_a = ' Other '
stem_text_b = ' the no \" Other \" track '
elif stemset_n == ' (Drums) ' :
stem_text_a = ' Drums '
stem_text_b = ' the no \" Drums \" track '
elif stemset_n == ' (Bass) ' :
stem_text_a = ' Bass '
stem_text_b = ' the no \" Bass \" track '
else :
stem_text_a = ' Vocals '
stem_text_b = ' Instrumental '
if autocompensate :
compensate = compensate_set
else :
compensate = data [ ' compensate ' ]
2022-06-06 22:44:20 +02:00
if data [ ' noise_pro_select ' ] == ' Auto Select ' :
noise_pro_set = noise_pro
2022-06-02 11:36:38 +02:00
else :
2022-06-06 22:44:20 +02:00
noise_pro_set = data [ ' noise_pro_select ' ]
2022-07-04 01:47:33 +02:00
2022-07-06 09:57:56 +02:00
if data [ ' wavtype ' ] == ' 32-bit Float ' :
wav_type_set = ' FLOAT '
elif data [ ' wavtype ' ] == ' 64-bit Float ' :
wav_type_set = ' DOUBLE '
else :
wav_type_set = data [ ' wavtype ' ]
flac_type_set = data [ ' flactype ' ]
mp3_bit_set = data [ ' mp3bit ' ]
if data [ ' normalize ' ] == True :
normalization_set = spec_utils . normalize
2022-07-23 09:56:57 +02:00
#print('normalization on')
2022-07-06 09:57:56 +02:00
else :
normalization_set = spec_utils . nonormalize
2022-07-23 09:56:57 +02:00
#print('normalization off')
2022-06-06 22:44:20 +02:00
2022-07-23 09:56:57 +02:00
#print(n_fft_scale_set)
#print(dim_f_set)
#print(demucs_model_set_name)
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
stime = time . perf_counter ( )
progress_var . set ( 0 )
text_widget . clear ( )
button_widget . configure ( state = tk . DISABLED ) # Disable Button
try : #Load File(s)
for file_num , music_file in tqdm ( enumerate ( data [ ' input_paths ' ] , start = 1 ) ) :
2022-06-13 09:07:19 +02:00
overlap_set = float ( data [ ' overlap ' ] )
channel_set = int ( data [ ' channel ' ] )
margin_set = int ( data [ ' margin ' ] )
shift_set = int ( data [ ' shifts ' ] )
2022-07-23 09:56:57 +02:00
demucs_model_set = demucs_model_set_name
2022-06-13 09:07:19 +02:00
split_mode = data [ ' split_mode ' ]
demucs_switch = data [ ' demucsmodel ' ]
2022-07-06 09:57:56 +02:00
if data [ ' wavtype ' ] == ' 64-bit Float ' :
if data [ ' saveFormat ' ] == ' Flac ' :
text_widget . write ( ' Please select \" WAV \" as your save format to use 64-bit Float. \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if data [ ' wavtype ' ] == ' 64-bit Float ' :
if data [ ' saveFormat ' ] == ' Mp3 ' :
text_widget . write ( ' Please select \" WAV \" as your save format to use 64-bit Float. \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-06-13 09:07:19 +02:00
2022-05-11 02:11:40 +02:00
_mixture = f ' { data [ " input_paths " ] } '
2022-07-06 09:57:56 +02:00
timestampnum = round ( datetime . utcnow ( ) . timestamp ( ) )
randomnum = randrange ( 100000 , 1000000 )
if data [ ' settest ' ] :
try :
_basename = f ' { data [ " export_path " ] } / { str ( timestampnum ) } _ { file_num } _ { os . path . splitext ( os . path . basename ( music_file ) ) [ 0 ] } '
except :
_basename = f ' { data [ " export_path " ] } / { str ( randomnum ) } _ { file_num } _ { os . path . splitext ( os . path . basename ( music_file ) ) [ 0 ] } '
else :
_basename = f ' { data [ " export_path " ] } / { file_num } _ { os . path . splitext ( os . path . basename ( music_file ) ) [ 0 ] } '
2022-05-11 02:11:40 +02:00
# -Get text and update progress-
base_text = get_baseText ( total_files = len ( data [ ' input_paths ' ] ) ,
file_num = file_num )
progress_kwargs = { ' progress_var ' : progress_var ,
' total_files ' : len ( data [ ' input_paths ' ] ) ,
' file_num ' : file_num }
2022-06-02 11:36:38 +02:00
2022-07-23 09:56:57 +02:00
if ' UVR ' in demucs_model_set :
if stemset_n == ' (Bass) ' or stemset_n == ' (Drums) ' or stemset_n == ' (Other) ' :
widget_text . write ( ' The selected Demucs model can only be used with vocal or instrumental stems. \n ' )
widget_text . write ( ' Please select a 4 stem Demucs model and try again. \n \n ' )
widget_text . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
gui_progress_bar . set ( 0 )
widget_button . configure ( state = tk . NORMAL ) # Enable Button
return
2022-06-03 11:08:37 +02:00
2022-07-23 09:56:57 +02:00
if stemset_n == ' (Instrumental) ' :
if not ' UVR ' in demucs_model_set :
widget_text . write ( base_text + ' The selected Demucs model cannot be used with this model. \n ' )
widget_text . write ( base_text + ' Only 2 stem Demucs models are compatible with this model. \n ' )
widget_text . write ( base_text + ' Setting Demucs model to \" UVR_Demucs_Model_1 \" . \n \n ' )
demucs_model_set = ' UVR_Demucs_Model_1 '
try :
2022-07-04 01:47:33 +02:00
if float ( data [ ' noisereduc_s ' ] ) > = 11 :
2022-06-03 11:08:37 +02:00
text_widget . write ( ' Error: Noise Reduction only supports values between 0-10. \n Please set a value between 0-10 (with or without decimals) and try again. ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-11 02:11:40 +02:00
total , used , free = shutil . disk_usage ( " / " )
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
total_space = int ( total / 1.074e+9 )
used_space = int ( used / 1.074e+9 )
free_space = int ( free / 1.074e+9 )
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
if int ( free / 1.074e+9 ) < = int ( 2 ) :
text_widget . write ( ' Error: Not enough storage on main drive to continue. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n Please ensure your main drive has at least 3 GB \' s of storage and try again. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n ' )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if int ( free / 1.074e+9 ) in [ 3 , 4 , 5 , 6 , 7 , 8 ] :
text_widget . write ( ' Warning: Your main drive is running low on storage. Your main drive must have \n at least 3 GB \' s of storage in order for this application function properly. \n \n ' )
text_widget . write ( ' Detected Total Space: ' + str ( total_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Used Space: ' + str ( used_space ) + ' GB ' + ' \n ' )
text_widget . write ( ' Detected Free Space: ' + str ( free_space ) + ' GB ' + ' \n \n ' )
except :
pass
if data [ ' noisereduc_s ' ] == ' None ' :
pass
else :
if not os . path . isfile ( " lib_v5 \ sox \ sox.exe " ) :
data [ ' noisereduc_s ' ] = ' None '
data [ ' non_red ' ] = False
widget_text . write ( base_text + ' SoX is missing and required for noise reduction. \n ' )
widget_text . write ( base_text + ' See the \" More Info \" tab in the Help Guide. \n ' )
widget_text . write ( base_text + ' Noise Reduction will be disabled until SoX is available. \n \n ' )
update_progress ( * * progress_kwargs ,
step = 0 )
e = os . path . join ( data [ " export_path " ] )
2022-06-13 09:07:19 +02:00
demucsmodel = ' models/Demucs_Models/ ' + str ( data [ ' DemucsModel_MDX ' ] )
2022-05-11 02:11:40 +02:00
pred = Predictor ( )
2022-07-23 09:56:57 +02:00
print ( ' \n \n modeltype: ' , modeltype )
print ( ' noise_pro: ' , noise_pro )
print ( ' stemset_n: ' , stemset_n )
print ( ' compensate_set: ' , compensate_set )
print ( ' source_val: ' , source_val )
print ( ' n_fft_scale_set: ' , n_fft_scale_set )
print ( ' dim_f_set: ' , dim_f_set , ' \n ' )
if modeltype == ' Not Set ' or \
noise_pro == ' Not Set ' or \
stemset_n == ' Not Set ' or \
compensate_set == ' Not Set ' or \
source_val == ' Not Set ' or \
n_fft_scale_set == ' Not Set ' or \
dim_f_set == ' Not Set ' :
confirm = tk . messagebox . askyesno ( title = ' Unrecognized Model Detected ' ,
message = f ' \n Would you like to set the correct model parameters for this model before continuing? \n ' )
if confirm :
pred . mdx_options ( )
else :
text_widget . write ( f ' An unrecognized model has been detected. \n \n ' )
text_widget . write ( f ' Please configure the ONNX model settings accordingly and try again. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-06-13 09:07:19 +02:00
pred . prediction_setup ( )
2022-05-11 02:11:40 +02:00
2022-07-23 09:56:57 +02:00
#print(demucsmodel)
2022-06-03 11:08:37 +02:00
2022-05-11 02:11:40 +02:00
# split
pred . prediction (
m = music_file ,
)
except Exception as e :
traceback_text = ' ' . join ( traceback . format_tb ( e . __traceback__ ) )
message = f ' Traceback Error: " { traceback_text } " \n { type ( e ) . __name__ } : " { e } " \n '
if runtimeerr in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Your PC cannot process this audio file with the chunk size selected. \n Please lower the chunk size and try again. \n \n ' )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' Your PC cannot process this audio file with the chunk size selected. \n Please lower the chunk size and try again. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
f ' Raw error details: \n \n ' +
message + f ' \n Error Time Stamp: [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if cuda_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
text_widget . write ( f ' Please close any GPU intensive applications and try again. \n ' )
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
f ' Please close any GPU intensive applications and try again. \n ' +
f ' If the error persists, your GPU might not be supported. \n \n ' +
f ' Raw error details: \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if mod_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Application files(s) are missing. \n ' )
text_widget . write ( " \n " + f ' { type ( e ) . __name__ } - " { e } " ' + " \n \n " )
text_widget . write ( f ' Please check for missing files/scripts in the app directory and try again. \n ' )
text_widget . write ( f ' If the error persists, please reinstall application or contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' Application files(s) are missing. \n ' +
f ' Please check for missing files/scripts in the app directory and try again. \n ' +
f ' If the error persists, please reinstall application or contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if file_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Missing file error raised. \n ' )
text_widget . write ( " \n " + f ' { type ( e ) . __name__ } - " { e } " ' + " \n \n " )
text_widget . write ( " \n " + f ' Please address the error and try again. ' + " \n " )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' Missing file error raised. \n ' +
" \n " + f ' Please address the error and try again. ' + " \n " +
f ' If this error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if ffmp_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
2022-05-11 08:42:20 +02:00
text_widget . write ( f ' The input file type is not supported or FFmpeg is missing. \n ' )
text_widget . write ( f ' Please select a file type supported by FFmpeg and try again. \n \n ' )
text_widget . write ( f ' If FFmpeg is missing or not installed, you will only be able to process \" .wav \" files \n until it is available on this system. \n \n ' )
2022-05-11 02:11:40 +02:00
text_widget . write ( f ' See the \" More Info \" tab in the Help Guide. \n \n ' )
text_widget . write ( f ' If this error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
torch . cuda . empty_cache ( )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
2022-05-11 08:42:20 +02:00
f ' The input file type is not supported or FFmpeg is missing. \n Please select a file type supported by FFmpeg and try again. \n \n ' +
f ' If FFmpeg is missing or not installed, you will only be able to process \" .wav \" files until it is available on this system. \n \n ' +
2022-05-11 02:11:40 +02:00
f ' See the \" More Info \" tab in the Help Guide. \n \n ' +
f ' If this error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if onnxmissing in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application could not detect this MDX-Net model on your system. \n ' )
text_widget . write ( f ' Please make sure all the models are present in the correct directory. \n ' )
text_widget . write ( f ' If the error persists, please reinstall application or contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' The application could not detect this MDX-Net model on your system. \n ' +
f ' Please make sure all the models are present in the correct directory. \n ' +
f ' If the error persists, please reinstall application or contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
2022-05-11 23:05:05 +02:00
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if onnxmemerror in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
2022-05-23 04:47:47 +02:00
text_widget . write ( f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' )
2022-05-11 23:05:05 +02:00
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
2022-06-06 22:44:20 +02:00
f ' Process Method: MDX-Net \n \n ' +
2022-05-11 23:05:05 +02:00
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
2022-05-23 04:47:47 +02:00
f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' +
f ' If the error persists, your GPU might not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if onnxmemerror2 in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough GPU memory to use this model. \n ' )
text_widget . write ( f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' If the error persists, your GPU might not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
2022-06-06 22:44:20 +02:00
f ' Process Method: MDX-Net \n \n ' +
2022-05-23 04:47:47 +02:00
f ' The application was unable to allocate enough GPU memory to use this model. \n ' +
f ' Please do the following: \n \n 1. Close any GPU intensive applications. \n 2. Lower the set chunk size. \n 3. Then try again. \n \n ' +
2022-05-11 23:05:05 +02:00
f ' If the error persists, your GPU might not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
2022-05-11 02:11:40 +02:00
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
if sf_write_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' Could not write audio file. \n ' )
text_widget . write ( f ' This could be due to low storage on target device or a system permissions issue. \n ' )
text_widget . write ( f " \n For raw error details, go to the Error Log tab in the Help Guide. \n " )
text_widget . write ( f ' \n If the error persists, please contact the developers. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
2022-06-06 22:44:20 +02:00
f ' Process Method: MDX-Net \n \n ' +
2022-05-11 02:11:40 +02:00
f ' Could not write audio file. \n ' +
f ' This could be due to low storage on target device or a system permissions issue. \n ' +
f ' If the error persists, please contact the developers. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-23 04:47:47 +02:00
if systemmemerr in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The application was unable to allocate enough system memory to use this \n model. \n \n ' )
text_widget . write ( f ' Please do the following: \n \n 1. Restart this application. \n 2. Ensure any CPU intensive applications are closed. \n 3. Then try again. \n \n ' )
text_widget . write ( f ' Please Note: Intel Pentium and Intel Celeron processors do not work well with \n this application. \n \n ' )
text_widget . write ( f ' If the error persists, the system may not have enough RAM, or your CPU might \n not be supported. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
2022-06-06 22:44:20 +02:00
f ' Process Method: MDX-Net \n \n ' +
2022-05-23 04:47:47 +02:00
f ' The application was unable to allocate enough system memory to use this model. \n ' +
f ' Please do the following: \n \n 1. Restart this application. \n 2. Ensure any CPU intensive applications are closed. \n 3. Then try again. \n \n ' +
f ' Please Note: Intel Pentium and Intel Celeron processors do not work well with this application. \n \n ' +
f ' If the error persists, the system may not have enough RAM, or your CPU might \n not be supported. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-06-06 22:44:20 +02:00
if model_adv_set_err in message :
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n \n ' )
text_widget . write ( f ' The current ONNX model settings are not compatible with the selected \n model. \n \n ' )
text_widget . write ( f ' Please re-configure the advanced ONNX model settings accordingly and try \n again. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' The current ONNX model settings are not compatible with the selected model. \n \n ' +
f ' Please re-configure the advanced ONNX model settings accordingly and try again. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
pass
torch . cuda . empty_cache ( )
progress_var . set ( 0 )
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
2022-05-23 04:47:47 +02:00
2022-05-11 02:11:40 +02:00
print ( traceback_text )
print ( type ( e ) . __name__ , e )
print ( message )
try :
with open ( ' errorlog.txt ' , ' w ' ) as f :
f . write ( f ' Last Error Received: \n \n ' +
f ' Error Received while processing " { os . path . basename ( music_file ) } " : \n ' +
f ' Process Method: MDX-Net \n \n ' +
f ' If this error persists, please contact the developers with the error details. \n \n ' +
message + f ' \n Error Time Stamp [ { datetime . now ( ) . strftime ( " % Y- % m- %d % H: % M: % S " ) } ] \n ' )
except :
tk . messagebox . showerror ( master = window ,
title = ' Error Details ' ,
message = message )
progress_var . set ( 0 )
text_widget . write ( " \n " + base_text + f ' Separation failed for the following audio file: \n ' )
text_widget . write ( base_text + f ' " { os . path . basename ( music_file ) } " \n ' )
text_widget . write ( f ' \n Error Received: \n ' )
text_widget . write ( " \n For raw error details, go to the Error Log tab in the Help Guide. \n " )
text_widget . write ( " \n " + f ' Please address the error and try again. ' + " \n " )
text_widget . write ( f ' If this error persists, please contact the developers with the error details. \n \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' )
2022-06-13 09:07:19 +02:00
try :
torch . cuda . empty_cache ( )
except :
pass
2022-05-11 02:11:40 +02:00
button_widget . configure ( state = tk . NORMAL ) # Enable Button
return
progress_var . set ( 0 )
text_widget . write ( f ' \n Conversion(s) Completed! \n ' )
text_widget . write ( f ' Time Elapsed: { time . strftime ( " % H: % M: % S " , time . gmtime ( int ( time . perf_counter ( ) - stime ) ) ) } ' ) # nopep8
2022-05-23 04:47:47 +02:00
torch . cuda . empty_cache ( )
2022-05-11 02:11:40 +02:00
button_widget . configure ( state = tk . NORMAL ) # Enable Button
if __name__ == ' __main__ ' :
start_time = time . time ( )
main ( )
print ( " Successfully completed music demixing. " ) ; print ( ' Total time: { 0:. {1} f}s ' . format ( time . time ( ) - start_time , 1 ) )