ultimatevocalremovergui/inference_MDX.py
2022-05-10 19:11:40 -05:00

1025 lines
48 KiB
Python

import os
from pickle import STOP
from tracemalloc import stop
from turtle import update
import subprocess
from unittest import skip
from pathlib import Path
import os.path
from datetime import datetime
import pydub
import shutil
#MDX-Net
#----------------------------------------
import soundfile as sf
import torch
import numpy as np
from demucs.model import Demucs
from demucs.utils import apply_model
from models import get_models, spec_effects
import onnxruntime as ort
import time
import os
from tqdm import tqdm
import warnings
import sys
import librosa
import psutil
#----------------------------------------
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
import torch
# Command line text parsing and widget manipulation
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
class Predictor():
def __init__(self):
pass
def prediction_setup(self, demucs_name,
channels=64):
if data['demucsmodel']:
self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels)
widget_text.write(base_text + 'Loading Demucs model... ')
update_progress(**progress_kwargs,
step=0.05)
self.demucs.to(device)
self.demucs.load_state_dict(torch.load(demucs_name))
widget_text.write('Done!\n')
self.demucs.eval()
self.onnx_models = {}
c = 0
self.models = get_models('tdf_extra', load=False, device=cpu, stems='vocals')
widget_text.write(base_text + 'Loading ONNX model... ')
update_progress(**progress_kwargs,
step=0.1)
c+=1
if data['gpu'] >= 0:
if torch.cuda.is_available():
run_type = ['CUDAExecutionProvider']
else:
data['gpu'] = -1
widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ")
run_type = ['CPUExecutionProvider']
else:
run_type = ['CPUExecutionProvider']
self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', model_set), providers=run_type)
widget_text.write('Done!\n')
def prediction(self, m):
#mix, rate = sf.read(m)
mix, rate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
mix = mix.T
sources = self.demix(mix.T)
widget_text.write(base_text + 'Inferences complete!\n')
c = -1
#Main Save Path
save_path = os.path.dirname(_basename)
#Vocal Path
vocal_name = '(Vocals)'
if data['modelFolder']:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
else:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
#Instrumental Path
Instrumental_name = '(Instrumental)'
if data['modelFolder']:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
else:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
#Non-Reduced Vocal Path
vocal_name = '(Vocals)'
if data['modelFolder']:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
else:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
if os.path.isfile(non_reduced_vocal_path):
file_exists_n = 'there'
else:
file_exists_n = 'not_there'
if os.path.isfile(vocal_path):
file_exists_v = 'there'
else:
file_exists_v = 'not_there'
if os.path.isfile(Instrumental_path):
file_exists_i = 'there'
else:
file_exists_i = 'not_there'
print('Is there already a voc file there? ', file_exists_v)
if not data['noisereduc_s'] == 'None':
c += 1
if not data['demucsmodel']:
if data['inst_only']:
widget_text.write(base_text + 'Preparing to save Instrumental...')
else:
widget_text.write(base_text + 'Saving vocals... ')
sf.write(non_reduced_vocal_path, sources[c].T, rate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(int(data['noisereduc_s'])/10)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
widget_text.write('Done!\n')
update_progress(**progress_kwargs,
step=(0.95))
else:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
sf.write(non_reduced_vocal_path, sources[3].T, rate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(int(data['noisereduc_s'])/10)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
c += 1
if not data['demucsmodel']:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
sf.write(vocal_path, sources[c].T, rate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
else:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
sf.write(vocal_path, sources[3].T, rate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
if data['voc_only'] and not data['inst_only']:
pass
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
widget_text.write(base_text + 'Saving Instrumental... ')
for i, e in tqdm(enumerate(finalfiles)):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
step=(1))
sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
if data['inst_only']:
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write('Done!\n')
if data['saveFormat'] == 'Mp3':
try:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_mp3, format="mp3", bitrate="320k")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_mp3, format="mp3", bitrate="320k")
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
if data['non_red'] == True:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_mp3, format="mp3", bitrate="320k")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n\n' +
f'Process Method: MDX-Net\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_flac, format="flac")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_flac, format="flac")
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
if data['non_red'] == True:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_flac, format="flac")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n\n' +
f'Process Method: MDX-Net\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
try:
print('Is there already a voc file there? ', file_exists_v)
print('Is there already a non_voc file there? ', file_exists_n)
except:
pass
if data['noisereduc_s'] == 'None':
pass
elif data['non_red'] == True:
pass
elif data['inst_only']:
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
widget_text.write(base_text + 'Completed Seperation!\n')
def demix(self, mix):
# 1 = demucs only
# 0 = onnx only
if data['chunks'] == 'Full':
chunk_set = 0
else:
chunk_set = data['chunks']
if data['chunks'] == 'Auto':
if data['gpu'] == 0:
try:
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
except:
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
if int(gpu_mem) <= int(5):
chunk_set = int(5)
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
if gpu_mem in [6, 7]:
chunk_set = int(30)
widget_text.write(base_text + 'Chunk size auto-set to 30... \n')
if gpu_mem in [8, 9, 10, 11, 12, 13, 14, 15]:
chunk_set = int(40)
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
if int(gpu_mem) >= int(16):
chunk_set = int(60)
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
if data['gpu'] == -1:
sys_mem = psutil.virtual_memory().total >> 30
if int(sys_mem) <= int(4):
chunk_set = int(1)
widget_text.write(base_text + 'Chunk size auto-set to 1... \n')
if sys_mem in [5, 6, 7, 8]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]:
chunk_set = int(25)
widget_text.write(base_text + 'Chunk size auto-set to 25... \n')
if int(sys_mem) >= int(17):
chunk_set = int(60)
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
elif data['chunks'] == 'Full':
chunk_set = 0
widget_text.write(base_text + "Chunk size set to full... \n")
else:
chunk_set = int(data['chunks'])
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]])
segmented_mix = {}
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
if not data['demucsmodel']:
sources = self.demix_base(segmented_mix, margin_size=margin)
else: # both, apply spec effects
base_out = self.demix_base(segmented_mix, margin_size=margin)
demucs_out = self.demix_demucs(segmented_mix, margin_size=margin)
nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out))
if nan_count > 0:
print('Warning: there are {} nan values in the array(s).'.format(nan_count))
demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out)
sources = {}
sources[3] = (spec_effects(wave=[demucs_out[3],base_out[0]],
algorithm='default',
value=b[3])*1.03597672895) # compensation
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
onnxitera = len(mixes)
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text.write(base_text + "Running ONNX Inference...\n")
widget_text.write(base_text + "Processing "f"{onnxitera} slices... ")
print(' Running ONNX Inference...')
for mix in mixes:
gui_progress_bar_onnx += 1
if data['demucsmodel']:
update_progress(**progress_kwargs,
step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx)))
else:
update_progress(**progress_kwargs,
step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx)))
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
mod = 0
for model in self.models:
mod += 1
trim = model.n_fft//2
gen_size = model.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_models[mod]
spek = model.stft(mix_waves)
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:,start:end])
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
del self.onnx_models
widget_text.write('Done!\n')
return _sources
def demix_demucs(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
shift_set = 0
with torch.no_grad():
sources = apply_model(self.demucs, cmix.to(device), split=True, overlap=overlap_set, shifts=shift_set)
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
data = {
# Paths
'input_paths': None,
'export_path': None,
'saveFormat': 'Wav',
# Processing Options
'demucsmodel': True,
'gpu': -1,
'chunks': 10,
'non_red': False,
'noisereduc_s': 3,
'mixing': 'default',
'modelFolder': False,
'voc_only': False,
'inst_only': False,
'break': False,
# Choose Model
'mdxnetModel': 'UVR-MDX-NET 1',
'high_end_process': 'mirroring',
}
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def hide_opt():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global widget_text
global gui_progress_bar
global music_file
global channel_set
global margin_set
global overlap_set
global default_chunks
global default_noisereduc_s
global _basename
global _mixture
global progress_kwargs
global base_text
global model_set
global model_set_name
# Update default settings
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
channel_set = int(64)
margin_set = int(44100)
overlap_set = float(0.5)
widget_text = text_widget
gui_progress_bar = progress_var
#Error Handling
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
cuda_err = "CUDA out of memory"
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: MDX-Net' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
data.update(kwargs)
if data['mdxnetModel'] == 'UVR-MDX-NET 1':
model_set = 'UVR_MDXNET_9703.onnx'
model_set_name = 'UVR_MDXNET_9703'
if data['mdxnetModel'] == 'UVR-MDX-NET 2':
model_set = 'UVR_MDXNET_9682.onnx'
model_set_name = 'UVR_MDXNET_9682'
if data['mdxnetModel'] == 'UVR-MDX-NET 3':
model_set = 'UVR_MDXNET_9662.onnx'
model_set_name = 'UVR_MDXNET_9662'
if data['mdxnetModel'] == 'UVR-MDX-NET Karaoke':
model_set = 'UVR_MDXNET_KARA.onnx'
model_set_name = 'UVR_MDXNET_Karaoke'
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
try: #Load File(s)
for file_num, music_file in tqdm(enumerate(data['input_paths'], start=1)):
_mixture = f'{data["input_paths"]}'
_basename = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
try:
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
if data['noisereduc_s'] == 'None':
pass
else:
if not os.path.isfile("lib_v5\sox\sox.exe"):
data['noisereduc_s'] = 'None'
data['non_red'] = False
widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n')
widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n')
widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n')
update_progress(**progress_kwargs,
step=0)
e = os.path.join(data["export_path"])
demucsmodel = 'models/Demucs_Model/demucs_extra-3646af93_org.th'
pred = Predictor()
pred.prediction_setup(demucs_name=demucsmodel,
channels=channel_set)
# split
pred.prediction(
m=music_file,
)
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'FFmpeg is missing or corrupt.\n')
text_widget.write(f'You will only be able to process .wav files until FFmpeg is available on this system.\n')
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'FFmpeg is missing or corrupt.\n' +
f'You will only be able to process .wav files until FFmpeg is available on this system.\n' +
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmissing in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application could not detect this MDX-Net model on your system.\n' +
f'Please make sure all the models are present in the correct directory.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
return
progress_var.set(0)
text_widget.write(f'\nConversion(s) Completed!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
if __name__ == '__main__':
start_time = time.time()
main()
print("Successfully completed music demixing.");print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))