module._memory was already moved over to a new shared_ptr.
So code_memory_size was not increased at all.
This lowers the heap space and so saves a bit of memory, usually between 50 to 100 MB.
This fixes a regression of c0a01f3adc
This function is called rarely and blocks quite often for a long time.
So don't waste power and let the CPU sleep.
This might also increase the performance as the other cores might be allowed to clock higher.
* Kernel: Correct behavior of Address Arbiter threads.
This corrects arbitration threads to behave just like in Horizon OS.
They are added into a container and released according to what priority
they had when added. Horizon OS does not reorder them if their priority
changes.
* Kernel: Address Feedback.
Over the course of the changes to the kernel code, a few includes are no
longer necessary, particularly with the change over to std::shared_ptr
from Boost's intrusive_ptr.
These are fairly trivial to implement, we can just do nothing. This also
provides a spot for us to potentially dump out any relevant info in the
future (e.g. for debugging purposes with homebrew, etc).
While we're at it, we can also correct the names of both of these
supervisor calls.
This commit corrects an error in which a Core could remain with an
exclusive state after running, leaving space for possible race
conditions between changing cores.
Now that literally every other API function is converted over to the
Memory class, we can just move the file-local page table into the Memory
implementation class, finally getting rid of global state within the
memory code.
The Write functions are used slightly less than the Read functions,
which make these a bit nicer to move over.
The only adjustments we really need to make here are to Dynarmic's
exclusive monitor instance. We need to keep a reference to the currently
active memory instance to perform exclusive read/write operations.
With all of the trivial parts of the memory interface moved over, we can
get right into moving over the bits that are used.
Note that this does require the use of GetInstance from the global
system instance to be used within hle_ipc.cpp and the gdbstub. This is
fine for the time being, as they both already rely on the global system
instance in other functions. These will be removed in a change directed
at both of these respectively.
For now, it's sufficient, as it still accomplishes the goal of
de-globalizing the memory code.
Amends a few interfaces to be able to handle the migration over to the
new Memory class by passing the class by reference as a function
parameter where necessary.
Notably, within the filesystem services, this eliminates two ReadBlock()
calls by using the helper functions of HLERequestContext to do that for
us.
A fairly straightforward migration. These member functions can just be
mostly moved verbatim with minor changes. We already have the necessary
plumbing in places that they're used.
IsKernelVirtualAddress() can remain a non-member function, since it
doesn't rely on class state in any form.
Migrates all of the direct mapping facilities over to the new memory
class. In the process, this also obsoletes the need for memory_setup.h,
so we can remove it entirely from the project.
* core_timing: Use better reference tracking for EventType.
- Moves ownership of the event to the caller, ensuring we don't fire events for destroyed objects.
- Removes need for unique names - we won't be using this for save states anyways.
This commit ensures cond var threads act exactly as they do in the real
console. The original implementation uses an RBTree and the behavior of
cond var threads is that at the same priority level they act like a
FIFO.
This commit corrects the behavior of cancel synchronization when the
thread is running/ready and ensures the next wait is cancelled as it's
suppose to.
Maintains implementation parity between QueryApplicationPlayStatistics
and QueryApplicationPlayStatisticsByUid.
These function the same behaviorally underneath the hood, with the only
difference being that one allows specifying a UID.
Uncovered a bug within Thread's SetCoreAndAffinityMask() where an
unsigned variable (ideal_core) was being compared against "< 0", which
would always be a false condition.
We can also get rid of an unused function (GetNextProcessorId) which contained a sign
mismatch warning.
- This does not actually seem to exist in the real kernel - games reset these automatically.
# Conflicts:
# src/core/hle/service/am/applets/applets.cpp
# src/core/hle/service/filesystem/fsp_srv.cpp
While not an issue, it does prevent fallthrough from occurring if
anything is ever added after this case (unlikely to occur, but this
turns a trivial "should not cause issues" into a definite "won't cause
issues).
While a map is an OK way to do lookups (and usually recommended in most
cases), this is a map that lives for the entire duration of the program
and only deallocates its contents when the program terminates.
Given the total size of the map is quite small, we can simply use a
std::array of pairs and utilize std::find_if to perform the same
behavior without loss of performance.
This eliminates a static constructor and places the data into the
read-only segment.
While we're at it, we can also handle malformed inputs instead of
directly dereferencing the resulting iterator.
In case of redundant yields, the scheduler will now idle the core for
it's timeslice, in order to avoid continuously yielding the same thing
over and over.
On parse errors, we can log out the explanatory string indicating what
the parsing error was, rather than just ignoring the variable and
returning an overly broad error code.
This only encourages the use of the global system instance (which will
be phased out long-term). Instead, we use the direct system function
call directly to remove the appealing but discouraged short-hand.
Migrates the HLE service code off the use of directly accessing the
global system instance where trivially able to do so.
This removes all usages of Core::CurrentProcess from the service code,
only 8 occurrences of this function exist elsewhere. There's still quite
a bit of "System::GetInstance()" being used, however this was able to
replace a few instances.
This commit uses guest fences on vSync event instead of an articial fake
fence we had.
It also corrects to keep signaling display events while loading the game
as the OS is suppose to send buffers to vSync during that time.
Previously we were simply returning the account-preselect structure all times but if passed with a different mode the game expects application-specific data. This also adds a hook for BCAT into this allowing us to send the launch parameter through bcat,
These functions are not stubbed and are called fairly often. Due to the nature of how often they're called, we should keep them marked as LOG_TRACE instead of LOG_DEBUG or LOG_WARNING
Avoids the use of global accessors, removing the reliance on global
state. This also makes dependencies explicit in the interface, as
opposed to being hidden
Volume is a f32 value. (SwIPC describes it as a u32, but it is actually f32 as corroborated by switchbrew docs and SetAudioDeviceOutputVolume)
```cpp
const f32 volume = rp.Pop<f32>();
```
If an unmapping operation fails, we shouldn't be decrementing the amount
of memory mapped and returning that the operation was successful. We
should actually be returning the error code in this case.
Avoids potentially expensive (depending on the size of the memory block)
allocations by reserving the necessary memory before performing both
insertions. This avoids scenarios where the second insert may cause a
reallocation to occur.
Avoids needing to read the same long sequence of code in both code
paths. Also makes it slightly nicer to read and debug, as the locals
will be able to be shown in the debugger.
This commit ensures that all backing memory allocated for the Guest CPU
is aligned to 256 bytes. This due to how gpu memory works and the heavy
constraints it has in the alignment of physical memory.
Audio devices use the supplied revision information in order to
determine if USB audio output is able to be supported. In this case, we
can only really handle using this revision information in
ListAudioDeviceName(), where it checks if USB audio output is supported
before supplying it as a device name.
A few other scenarios exist where the revision info is checked, such as:
- Early exiting from SetAudioDeviceOutputVolume if USB audio is
attempted to be set when that device is unsupported.
- Early exiting and returning 0.0f in GetAudioDeviceOutputVolume when
USB output volume is queried and it's an unsupported device.
- Falling back to AHUB headphones in GetActiveAudioDeviceName when the
device type is USB output, but is unsupported based off the revision
info.
In order for these changes to also be implemented, a few other changes
to the interface need to be made.
Given we now properly handle everything about ListAudioDeviceName(), we
no longer need to describe it as a stubbed function.
The revision querying facilities are used by more than just audren. e.g.
audio devices can use this to test whether or not USB audio output is
supported.
This will be used within the following change.
AudioDevice and AudioInterface aren't valid device names on the Switch.
We should also be returning consistent names in
GetActiveAudioDeviceName().
While we're at it, we can also handle proper name output in
ListAudioDeviceName, by returning all the available devices on the
Switch.
Creating multiple "AudioRenderer" threads cause the previous thread to be overwritten. The thread will name be renamed to AudioRenderer-InstanceX, where X is the current instance number.
Provides a basic implementation of SetAutoSleepDisabled. Until idle
handling is implemented, this is about the best we can do.
In the meantime, provide a rough documenting of specifics that occur
when this function is called on actual hardware.
This was initially necessary when AArch64 JIT emulation was in its
infancy and all memory-related instructions weren't implemented.
Given the JIT now has all of these facilities implemented, we can remove
these functions from the CPU interface.
Prior to PR, Yuzu did not restore memory to RW-
on unmap of mirrored memory or unloading of NRO.
(In fact, in the NRO case, the memory was unmapped
instead of reprotected to --- on Load, so it was
actually lost entirely...)
This PR addresses that, and restores memory to RW-
as it should.
This fixes a crash in Super Smash Bros when creating
a World of Light save for the first time, and possibly
other games/circumstances.
We don't have any friends implemented in Yuzu yet so it doesn't make sense to return any friends. For now we'll be returning 0 friends however the information provided will allow a proper implementation of this cmd when needed.
This sets the DeviceMapped attribute for GPU-mapped memory blocks,
and prevents merging device mapped blocks. This prevents memory
mapped from the gpu from having its backing address changed by
block coalesce.
This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu,
which can be used to map memory at a desired address by games since
3.0.0.
It also properly parses SystemResourceSize from NPDM, and makes
information available via svcGetInfo.
This is needed for games like Super Smash Bros. and Diablo 3 -- this
PR's implementation does not run into the "ASCII reads" issue mentioned
in the comments of #2626, which was caused by the following bugs in
Yuzu's memory management that this PR also addresses:
* Yuzu's memory coalescing does not properly merge blocks. This results
in a polluted address space/svcQueryMemory results that would be
impossible to replicate on hardware, which can lead to game code making
the wrong assumptions about memory layout.
* This implements better merging for AllocatedMemoryBlocks.
* Yuzu's implementation of svcMirrorMemory unprotected the entire
virtual memory range containing the range being mirrored. This could
lead to games attempting to map data at that unprotected
range/attempting to access that range after yuzu improperly unmapped
it.
* This PR fixes it by simply calling ReprotectRange instead of
Reprotect.
Prior to execution within a process beginning, the process establishes
its own TLS region for uses (as far as I can tell) related to exception
handling.
Now that TLS creation was decoupled from threads themselves, we can add
this behavior to our Process class. This is also good, as it allows us
to remove a stub within svcGetInfo, namely querying the address of that
region.
Provides a more accurate name for the memory region and also
disambiguates between the map and new map regions of memory, making it
easier to understand.
Handles the placement of the stack a little nicer compared to the
previous code, which was off in a few ways. e.g.
The stack (new map) region, shouldn't be the width of the entire address
space if the size of the region calculation ends up being zero. It
should be placed at the same location as the TLS IO region and also have
the same size.
In the event the TLS IO region contains a size of zero, we should also
be doing the same thing. This fixes our memory layout a little bit and
also resolves some cases where assertions can trigger due to the memory
layout being incorrect.
Extracts out all of the thread local storage management from thread
instances themselves and makes the owning process handle the management
of the memory. This brings the memory management slightly more in line
with how the kernel handles these allocations.
Furthermore, this also makes the TLS page management a little more
readable compared to the lingering implementation that was carried over
from Citra.
This will be necessary for making our TLS slot management slightly more
straightforward. This can also be utilized for other purposes in the
future.
We can implement the existing simpler overload in terms of this one
anyways, we just pass the beginning and end of the ASLR region as the
boundaries.
The event should only be signaled when an output audio device gets changed. Example, Speaker to USB headset. We don't identify different devices internally yet so there's no need to signal the event yet.
StartLrAssignmentMode and StopLrAssignmentMode don't require any implementation as it's just used for showing the screen of changing the controller orientation if the user wishes to do so. Ever since #1634 this has not been needed as users can specify the controller orientation from the config and swap at any time. We store a private member just in case this gets used for anything extra in the future
InitializeApplicationInfoRestricted will need further implementation as it's checking for other user requirements about the game. As we're emulating, we're assuming the user owns the game so we skip these checks currently, implementation will need to be added further on
This PR attempts to implement the shared memory provided by GetSharedMemoryNativeHandle. There is still more work to be done however that requires a rehaul of the current time module to handle clock contexts. This PR is mainly to get the basic functionality of the SharedMemory working and allow the use of addition to it whilst things get improved on.
Things to note:
Memory Barriers are used in the SharedMemory and a better solution would need to be done to implement this. Currently in this PR I’m faking the memory barriers as everything is sync and single threaded. They work by incrementing the counter and just populate the two data slots. On data reading, it will read the last added data.
Specific values in the shared memory would need to be updated periodically. This isn't included in this PR since we don't actively do this yet. In a later PR when time is refactored this should be done.
Finally, as we don't handle clock contexts. When time is refactored, we will need to update the shared memory for specific contexts. This PR does this already however since the contexts are all identical and not separated. We're just updating the same values for each context which in this case is empty.
Tiime:SetStandardUserSystemClockAutomaticCorrectionEnabled, Time:IsStandardUserSystemClockAutomaticCorrectionEnabled are also partially implemented in this PR. The reason the implementation is partial is because once again, a lack of clock contexts. This will be improved on in a future PR.
This PR closes issue #2556
Even though it has been proven that IAudioRenderer:SystemEvent is
actually an automatic event. The current implementation of such event is
all thought to be manual. Thus it's implementation needs to be corrected
when doing such change. As it is right now this PR introduced a series
of regressions on softlocks on multiple games. Therefore, this pr
reverts such change until a correct implementation is made.
The old implementation had faulty Threadsafe methods where events could
be missing. This implementation unifies unsafe/safe methods and makes
core timing thread safe overall.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
This is performing more work than would otherwise be necessary during
VMManager's destruction. All we actually want to occur in this scenario
is for any allocated memory to be freed, which will happen automatically
as the VMManager instance goes out of scope.
Anything else being done is simply unnecessary work.
Given we don't currently implement the personal heap yet, the existing
memory querying functions are essentially doing what the memory querying
types introduced in 6.0.0 do.
So, we can build the necessary machinery over the top of those and just
use them as part of info types.
Previously, the code was accumulating data into a std::vector and then
tossing all of it away if a setting was disabled.
Instead, we can just check if it's disabled and do no work at all if
possible. If it's enabled, then we can append to the vector and
allocate.
Unlikely to impact usage much, but it is slightly less sloppy with
resources.
A few of the aoc service stubs/implementations weren't fully popping all
of the parameters passed to them. This ensures that all parameters are
popped and, at minimum, logged out.
These are only used from within this translation unit, so they don't
need to have external linkage. They were intended to be marked with this
anyways to be consistent with the other service functions.
Renames the members to more accurately indicate what they signify.
"OneShot" and "Sticky" are kind of ambiguous identifiers for the reset
types, and can be kind of misleading. Automatic and Manual communicate
the kind of reset type in a clearer manner. Either the event is
automatically reset, or it isn't and must be manually cleared.
The "OneShot" and "Sticky" terminology is just a hold-over from Citra
where the kernel had a third type of event reset type known as "Pulse".
Given the Switch kernel only has two forms of event reset types, we
don't need to keep the old terminology around anymore.
This reduces the boilerplate that services have to write out the current thread explicitly. Using current thread instead of client thread is also semantically incorrect, and will be a problem when we implement multicore (at which time there will be multiple current threads)
This corrects cases where it was possible to write more entries into the
write buffer than were requested. Now, we check the size of the buffer
before actually writing into them.
We were also returning the wrong value for
GetAvailableLanguageCodeCount2(). This was previously returning 64, but
only 17 should have been returned. 64 entries is the size of the static
array used in MakeLanguageCode() within the service binary itself, but
isn't the actual total number of language codes present.
Also introduced in REV5 was a variable-size audio command buffer. This
also affects how the size of the work buffer should be determined, so we
can add handling for this as well.
Thankfully, no other alterations were made to how the work buffer size
is calculated in 7.0.0-8.0.0. There were indeed changes made to to how
some of the actual audio commands are generated though (particularly in
REV7), however they don't apply here.
Introduced in REV5. This is trivial to add support for, now that
everything isn't a mess of random magic constant values.
All this is, is a change in data type sizes as far as this function
cares.
"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
These are actually quite important indicators of thread lifetimes, so
they should be going into the debug log, rather than being treated as
misc info and delegated to the trace log.
Makes the code much nicer to follow in terms of behavior and control
flow. It also fixes a few bugs in the implementation.
Notably, the thread's owner process shouldn't be accessed in order to
retrieve the core mask or ideal core. This should be done through the
current running process. The only reason this bug wasn't encountered yet
is because we currently only support running one process, and thus every
owner process will be the current process.
We also weren't checking against the process' CPU core mask to see if an
allowed core is specified or not.
With this out of the way, it'll be less noisy to implement proper
handling of the affinity flags internally within the kernel thread
instances.
Provides serialization/deserialization to the database in system save files, accessors for database state and proper handling of both major Mii formats (MiiInfo and MiiStoreData)
This is a holdover from Citra, where the 3DS has both
WaitSynchronization1 and WaitSynchronizationN. The switch only has one
form of wait synchronizing (literally WaitSynchonization). This allows
us to throw out code that doesn't apply at all to the Switch kernel.
Because of this unnecessary dichotomy within the wait synchronization
utilities, we were also neglecting to properly handle waiting on
multiple objects.
While we're at it, we can also scrub out any lingering references to
WaitSynchronization1/WaitSynchronizationN in comments, and change them
to WaitSynchronization (or remove them if the mention no longer
applies).
The actual behavior of this function is slightly more complex than what
we're currently doing within the supervisor call. To avoid dumping most
of this behavior in the supervisor call itself, we can migrate this to
another function.
This member variable is entirely unused. It was only set but never
actually utilized. Given that, we can remove it to get rid of noise in
the thread interface.
Essentially performs the inverse of svcMapProcessCodeMemory. This unmaps
the aliasing region first, then restores the general traits of the
aliased memory.
What this entails, is:
- Restoring Read/Write permissions to the VMA.
- Restoring its memory state to reflect it as a general heap memory region.
- Clearing the memory attributes on the region.
This gives us significantly more control over where in the
initialization process we start execution of the main process.
Previously we were running the main process before the CPU or GPU
threads were initialized (not good). This amends execution to start
after all of our threads are properly set up.
Initially required due to the split codepath with how the initial main
process instance was initialized. We used to initialize the process
like:
Init() {
main_process = Process::Create(...);
kernel.MakeCurrentProcess(main_process.get());
}
Load() {
const auto load_result = loader.Load(*kernel.GetCurrentProcess());
if (load_result != Loader::ResultStatus::Success) {
// Handle error here.
}
...
}
which presented a problem.
Setting a created process as the main process would set the page table
for that process as the main page table. This is fine... until we get to
the part that the page table can have its size changed in the Load()
function via NPDM metadata, which can dictate either a 32-bit, 36-bit,
or 39-bit usable address space.
Now that we have full control over the process' creation in load, we can
simply set the initial process as the main process after all the loading
is done, reflecting the potential page table changes without any
special-casing behavior.
We can also remove the cache flushing within LoadModule(), as execution
wouldn't have even begun yet during all usages of this function, now
that we have the initialization order cleaned up.
Our initialization process is a little wonky than one would expect when
it comes to code flow. We initialize the CPU last, as opposed to
hardware, where the CPU obviously needs to be first, otherwise nothing
else would work, and we have code that adds checks to get around this.
For example, in the page table setting code, we check to see if the
system is turned on before we even notify the CPU instances of a page
table switch. This results in dead code (at the moment), because the
only time a page table switch will occur is when the system is *not*
running, preventing the emulated CPU instances from being notified of a
page table switch in a convenient manner (technically the code path
could be taken, but we don't emulate the process creation svc handlers
yet).
This moves the threads creation into its own member function of the core
manager and restores a little order (and predictability) to our
initialization process.
Previously, in the multi-threaded cases, we'd kick off several threads
before even the main kernel process was created and ready to execute (gross!).
Now the initialization process is like so:
Initialization:
1. Timers
2. CPU
3. Kernel
4. Filesystem stuff (kind of gross, but can be amended trivially)
5. Applet stuff (ditto in terms of being kind of gross)
6. Main process (will be moved into the loading step in a following
change)
7. Telemetry (this should be initialized last in the future).
8. Services (4 and 5 should ideally be alongside this).
9. GDB (gross. Uses namespace scope state. Needs to be refactored into a
class or booted altogether).
10. Renderer
11. GPU (will also have its threads created in a separate step in a
following change).
Which... isn't *ideal* per-se, however getting rid of the wonky
intertwining of CPU state initialization out of this mix gets rid of
most of the footguns when it comes to our initialization process.
Some objects declare their handle type as const, while others declare it
as constexpr. This makes the const ones constexpr for consistency, and
prevent unexpected compilation errors if these happen to be attempted to be
used within a constexpr context.
These indicate options that alter how a read/write is performed.
Currently we don't need to handle these, as the only one that seems to
be used is for writes, but all the custom options ever seem to do is
immediate flushing, which we already do by default.
We need to ensure dynarmic gets a valid pointer if the page table is
resized (the relevant pointers would be invalidated in this scenario).
In this scenario, the page table can be resized depending on what kind
of address space is specified within the NPDM metadata (if it's
present).
Adjusts the interface of the wrappers to take a system reference, which
allows accessing a system instance without using the global accessors.
This also allows getting rid of all global accessors within the
supervisor call handling code. While this does make the wrappers
themselves slightly more noisy, this will be further cleaned up in a
follow-up. This eliminates the global system accessors in the current
code while preserving the existing interface.
Keeps the return type consistent with the function name. While we're at
it, we can also reduce the amount of boilerplate involved with handling
these by using structured bindings.
Rather than make a full copy of the path, we can just use a string view
and truncate the viewed portion of the string instead of creating a totally
new truncated string.
In several places, we have request parsers where there's nothing to
really parse, simply because the HLE function in question operates on
buffers. In these cases we can just remove these instances altogether.
In the other cases, we can retrieve the relevant members from the parser
and at least log them out, giving them some use.
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
We need to be checking whether or not the given address is within the
kernel address space or if the given address isn't word-aligned and bail
in these scenarios instead of trashing any kernel state.
For whatever reason, shared memory was being used here instead of
transfer memory, which (quite clearly) will not work based off the name
of the function.
This corrects this wonky usage of shared memory.
Given server sessions can be given a name, we should allow retrieving
it instead of using the default implementation of GetName(), which would
just return "[UNKNOWN KERNEL OBJECT]".
The AddressArbiter type isn't actually used, given the arbiter itself
isn't a direct kernel object (or object that implements the wait object
facilities).
Given this, we can remove the enum entry entirely.
Similarly like svcGetProcessList, this retrieves the list of threads
from the current process. In the kernel itself, a process instance
maintains a list of threads, which are used within this function.
Threads are registered to a process' thread list at thread
initialization, and unregistered from the list upon thread destruction
(if said thread has a non-null owning process).
We assert on the debug event case, as we currently don't implement
kernel debug objects.
Now that ShouldWait() is a const qualified member function, this one can
be made const qualified as well, since it can handle passing a const
qualified this pointer to ShouldWait().
Previously this was performing a u64 + int sign conversion. When dealing
with addresses, we should generally be keeping the arithmetic in the
same signedness type.
This also gets rid of the static lifetime of the constant, as there's no
need to make a trivial type like this potentially live for the entire
duration of the program.
This doesn't really provide any benefit to the resource limit interface.
There's no way for callers to any of the service functions for resource
limits to provide a custom name, so all created instances of resource
limits other than the system resource limit would have a name of
"Unknown".
The system resource limit itself is already trivially identifiable from
its limit values, so there's no real need to take up space in the object to
identify one object meaningfully out of N total objects.
Since C++17, the introduction of deduction guides for locking facilities
means that we no longer need to hardcode the mutex type into the locks
themselves, making it easier to switch mutex types, should it ever be
necessary in the future.
Since C++17, we no longer need to explicitly specify the type of the
mutex within the lock_guard. The type system can now deduce these with
deduction guides.
Based off RE, most of these structure members are register values, which
makes, sense given this service is used to convey fatal errors.
One member indicates the program entry point address, one is a set of
bit flags used to determine which registers to print, and one member
indicates the architecture type.
The only member that still isn't determined is the final member within
the data structure.
The kernel makes sure that the given size to unmap is always the same
size as the entire region managed by the shared memory instance,
otherwise it returns an error code signifying an invalid size.
This is similarly done for transfer memory (which we already check for).
This was initially added to prevent problems from stubbed/not implemented NFC services, but as we never encountered such and as it's only used in a deprecated function anyway, I guess we can just remove it to prevent more clutter of the settings.
Reports the (mostly) correct size through svcGetInfo now for queries to
total used physical memory. This still doesn't correctly handle memory
allocated via svcMapPhysicalMemory, however, we don't currently handle
that case anyways.
This will make operating with the process-related SVC commands much
nicer in the future (the parameter representing the stack size in
svcStartProcess is a 64-bit value).
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.
In some cases, our callbacks were using s64 as a parameter, and in other
cases, they were using an int, which is inconsistent.
To make all callbacks consistent, we can just use an s64 as the type for
late cycles, given it gets rid of the need to cast internally.
While we're at it, also resolve some signed/unsigned conversions that
were occurring related to the callback registration.
One behavior that we weren't handling properly in our heap allocation
process was the ability for the heap to be shrunk down in size if a
larger size was previously requested.
This adds the basic behavior to do so and also gets rid of HeapFree, as
it's no longer necessary now that we have allocations and deallocations
going through the same API function.
While we're at it, fully document the behavior that this function
performs.
Makes it more obvious that this function is intending to stand in for
the actual supervisor call itself, and not acting as a general heap
allocation function.
Also the following change will merge the freeing behavior of HeapFree
into this function, so leaving it as HeapAllocate would be misleading.
In cases where HeapAllocate is called with the same size of the current
heap, we can simply do nothing and return successfully.
This avoids doing work where we otherwise don't have to. This is also
what the kernel itself does in this scenario.
Another holdover from citra that can be tossed out is the notion of the
heap needing to be allocated in different addresses. On the switch, the
base address of the heap will always be managed by the memory allocator
in the kernel, so this doesn't need to be specified in the function's
interface itself.
The heap on the switch is always allocated with read/write permissions,
so we don't need to add specifying the memory permissions as part of the
heap allocation itself either.
This also corrects the error code returned from within the function.
If the size of the heap is larger than the entire heap region, then the
kernel will report an out of memory condition.
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.
This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
Makes it more evident that one is for actual code and one is for actual
data. Mutable and static are less than ideal terms here, because
read-only data is technically not mutable, but we were mapping it with
that label.
Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
This function passes in the desired main applet and library applet
volume levels. We can then just pass those values back within the
relevant volume getter functions, allowing us to unstub those as well.
The initial values for the library and main applet volumes differ. The
main applet volume is 0.25 by default, while the library applet volume
is initialized to 1.0 by default in the services themselves.
Rather than make a global accessor for this sort of thing. We can make
it a part of the thread interface itself. This allows getting rid of a
hidden global accessor in the kernel code.
This condition was checking against the nominal thread priority, whereas
the kernel itself checks against the current priority instead. We were
also assigning the nominal priority, when we should be assigning
current_priority, which takes priority inheritance into account.
This can lead to the incorrect priority being assigned to a thread.
Given we recursively update the relevant threads, we don't need to go
through the whole mutex waiter list. This matches what the kernel does
as well (only accessing the first entry within the waiting list).