1
0
mirror of synced 2024-12-18 02:16:08 +01:00
Retrieval-based-Voice-Conve.../infer-web.py

1507 lines
59 KiB
Python
Raw Normal View History

import os, sys
2023-08-30 11:43:06 +02:00
now_dir = os.getcwd()
sys.path.append(now_dir)
2023-08-27 15:21:48 +02:00
import logging
import shutil
2023-08-27 15:21:48 +02:00
import threading
2023-08-19 15:47:10 +02:00
import traceback
import warnings
from random import shuffle
2023-05-21 05:10:20 +02:00
from subprocess import Popen
from time import sleep
2023-09-02 07:53:56 +02:00
import json
import pathlib
2023-08-27 15:21:48 +02:00
import fairseq
2023-05-21 05:10:20 +02:00
import faiss
import gradio as gr
2023-08-27 15:21:48 +02:00
import numpy as np
import torch
from dotenv import load_dotenv
from sklearn.cluster import MiniBatchKMeans
2023-08-19 15:47:10 +02:00
from configs.config import Config
2023-08-21 13:53:11 +02:00
from i18n.i18n import I18nAuto
from infer.lib.train.process_ckpt import (
change_info,
extract_small_model,
merge,
show_info,
)
2023-08-27 15:21:48 +02:00
from infer.modules.uvr5.modules import uvr
from infer.modules.vc.modules import VC
2023-08-19 15:47:10 +02:00
logging.getLogger("numba").setLevel(logging.WARNING)
2023-05-21 05:10:20 +02:00
logger = logging.getLogger(__name__)
2023-05-21 05:10:20 +02:00
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
2023-05-21 05:10:20 +02:00
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
2023-08-29 18:27:23 +02:00
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
2023-08-30 11:43:06 +02:00
os.environ["TEMP"] = tmp
2023-05-21 05:10:20 +02:00
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
2023-08-19 15:47:10 +02:00
load_dotenv()
config = Config()
2023-08-19 15:47:10 +02:00
vc = VC(config)
if config.dml == True:
2023-08-12 19:05:58 +02:00
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
2023-05-21 05:10:20 +02:00
i18n = I18nAuto()
logger.info(i18n)
2023-05-21 05:10:20 +02:00
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
if torch.cuda.is_available() or ngpu != 0:
2023-05-21 05:10:20 +02:00
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if any(
value in gpu_name.upper()
for value in [
"10",
"16",
"20",
"30",
"40",
"A2",
"A3",
"A4",
"P4",
2023-06-18 11:56:29 +02:00
"A50",
"500",
"A60",
"70",
"80",
"90",
"M4",
"T4",
"TITAN",
]
):
# A10#A100#V100#A40#P40#M40#K80#A4500
2023-05-21 05:10:20 +02:00
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(
int(
torch.cuda.get_device_properties(i).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
)
if if_gpu_ok and len(gpu_infos) > 0:
2023-05-21 05:10:20 +02:00
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
2023-08-19 15:47:10 +02:00
weight_root = os.getenv("weight_root")
weight_uvr5_root = os.getenv("weight_uvr5_root")
2023-09-01 08:11:55 +02:00
index_root = os.getenv("index_root")
2023-08-19 15:47:10 +02:00
2023-05-21 05:10:20 +02:00
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth") or "onnx" in name:
2023-05-21 05:10:20 +02:00
uvr5_names.append(name.replace(".pth", ""))
2023-08-19 15:47:41 +02:00
2023-05-21 05:10:20 +02:00
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"}, {
"choices": sorted(index_paths),
"__type__": "update",
}
def clean():
return {"value": "", "__type__": "update"}
2023-08-29 18:23:24 +02:00
def export_onnx():
from infer.modules.onnx.export import export_onnx as eo
2023-08-29 18:23:24 +02:00
eo()
2023-05-21 05:10:20 +02:00
2023-05-21 05:10:20 +02:00
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while 1:
if p.poll() is None:
2023-05-21 05:10:20 +02:00
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() is None:
2023-05-21 05:10:20 +02:00
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
f.close()
2023-09-02 07:53:56 +02:00
per = 3.0 if config.is_half else 3.7
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
config.python_cmd,
trainset_dir,
sr,
n_p,
now_dir,
exp_dir,
config.noparallel,
per,
2023-05-21 05:10:20 +02:00
)
logger.info(cmd)
2023-05-21 05:10:20 +02:00
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
2023-05-21 05:10:20 +02:00
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
2023-05-21 05:10:20 +02:00
yield log
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
2023-05-21 05:10:20 +02:00
gpus = gpus.split("-")
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0:
if f0method != "rmvpe_gpu":
2023-08-21 13:53:11 +02:00
cmd = (
2023-09-02 07:53:56 +02:00
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
2023-08-21 13:53:11 +02:00
% (
2023-09-02 07:53:56 +02:00
config.python_cmd,
2023-08-21 13:53:11 +02:00
now_dir,
exp_dir,
n_p,
f0method,
)
2023-07-26 13:50:50 +02:00
)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
2023-07-26 13:50:50 +02:00
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
else:
if gpus_rmvpe != "-":
2023-08-12 19:05:58 +02:00
gpus_rmvpe = gpus_rmvpe.split("-")
leng = len(gpus_rmvpe)
ps = []
for idx, n_g in enumerate(gpus_rmvpe):
cmd = (
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
% (
config.python_cmd,
leng,
idx,
n_g,
now_dir,
exp_dir,
config.is_half,
)
2023-08-12 19:05:58 +02:00
)
logger.info(cmd)
2023-08-12 19:05:58 +02:00
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi, #
2023-08-12 19:05:58 +02:00
args=(
done,
ps,
),
).start()
else:
2023-08-21 13:53:11 +02:00
cmd = (
config.python_cmd
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
% (
now_dir,
exp_dir,
)
2023-07-26 13:50:50 +02:00
)
logger.info(cmd)
2023-07-26 13:50:50 +02:00
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
2023-08-12 19:05:58 +02:00
p.wait()
done = [True]
while 1:
with open(
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
) as f:
2023-08-12 19:05:58 +02:00
yield (f.read())
sleep(1)
if done[0]:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
2023-08-12 19:05:58 +02:00
log = f.read()
logger.info(log)
2023-08-12 19:05:58 +02:00
yield log
2023-05-21 05:10:20 +02:00
####对不同part分别开多进程
"""
n_part=int(sys.argv[1])
i_part=int(sys.argv[2])
i_gpu=sys.argv[3]
exp_dir=sys.argv[4]
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
"""
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = (
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
% (
config.python_cmd,
config.device,
leng,
idx,
n_g,
now_dir,
exp_dir,
version19,
)
2023-05-21 05:10:20 +02:00
)
logger.info(cmd)
2023-05-21 05:10:20 +02:00
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi,
args=(
done,
ps,
),
).start()
while 1:
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0]:
2023-05-21 05:10:20 +02:00
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
logger.info(log)
2023-05-21 05:10:20 +02:00
yield log
def get_pretrained_models(path_str, f0_str, sr2):
if_pretrained_generator_exist = os.access(
2023-08-21 13:53:11 +02:00
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if_pretrained_discriminator_exist = os.access(
2023-08-21 13:53:11 +02:00
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
2023-06-18 15:49:49 +02:00
if not if_pretrained_generator_exist:
logger.warn(
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
2023-06-18 15:49:49 +02:00
if not if_pretrained_discriminator_exist:
logger.warn(
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
path_str,
f0_str,
sr2,
)
2023-05-21 05:10:20 +02:00
return (
2023-08-21 13:53:11 +02:00
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_generator_exist
else "",
2023-08-21 13:53:11 +02:00
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
if if_pretrained_discriminator_exist
else "",
2023-05-21 05:10:20 +02:00
)
def change_sr2(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
return get_pretrained_models(path_str, f0_str, sr2)
2023-05-21 05:10:20 +02:00
def change_version19(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
if sr2 == "32k" and version19 == "v1":
sr2 = "40k"
to_return_sr2 = (
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
if version19 == "v1"
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
)
2023-05-21 05:10:20 +02:00
f0_str = "f0" if if_f0_3 else ""
return (
*get_pretrained_models(path_str, f0_str, sr2),
to_return_sr2,
)
2023-05-21 05:10:20 +02:00
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
path_str = "" if version19 == "v1" else "_v2"
return (
{"visible": if_f0_3, "__type__": "update"},
*get_pretrained_models(path_str, "f0", sr2),
2023-05-21 05:10:20 +02:00
)
2023-05-21 05:10:20 +02:00
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if if_f0_3:
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
logger.debug("Write filelist done")
2023-05-21 05:10:20 +02:00
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
logger.info("Use gpus: %s", str(gpus16))
if pretrained_G14 == "":
logger.info("No pretrained Generator")
if pretrained_D15 == "":
logger.info("No pretrained Discriminator")
2023-09-02 07:53:56 +02:00
if version19 == "v1" or sr2 == "40k":
config_path = "v1/%s.json" % sr2
else:
config_path = "v2/%s.json" % sr2
config_save_path = os.path.join(exp_dir, "config.json")
if not pathlib.Path(config_save_path).exists():
with open(config_save_path, "w", encoding="utf-8") as f:
json.dump(
config.json_config[config_path],
f,
ensure_ascii=False,
indent=4,
sort_keys=True,
)
2023-09-02 07:53:56 +02:00
f.write("\n")
2023-05-21 05:10:20 +02:00
if gpus16:
cmd = (
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
% (
config.python_cmd,
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
1 if if_save_every_weights18 == i18n("") else 0,
version19,
)
2023-05-21 05:10:20 +02:00
)
else:
cmd = (
2023-09-02 07:53:56 +02:00
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
2023-05-21 05:10:20 +02:00
% (
2023-09-02 07:53:56 +02:00
config.python_cmd,
2023-05-21 05:10:20 +02:00
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
total_epoch11,
save_epoch10,
2023-08-12 19:05:58 +02:00
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
2023-05-21 05:10:20 +02:00
1 if if_save_latest13 == i18n("") else 0,
1 if if_cache_gpu17 == i18n("") else 0,
1 if if_save_every_weights18 == i18n("") else 0,
version19,
)
)
logger.info(cmd)
2023-05-21 05:10:20 +02:00
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1, version19):
2023-08-12 19:05:58 +02:00
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
exp_dir = "logs/%s" % (exp_dir1)
2023-05-21 05:10:20 +02:00
os.makedirs(exp_dir, exist_ok=True)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if not os.path.exists(feature_dir):
2023-05-21 05:10:20 +02:00
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
infos = []
2023-05-21 05:10:20 +02:00
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
yield "\n".join(infos)
try:
big_npy = (
MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256 * config.n_cpu,
compute_labels=False,
init="random",
)
.fit(big_npy)
.cluster_centers_
)
except:
info = traceback.format_exc()
logger.info(info)
infos.append(info)
yield "\n".join(infos)
2023-05-21 05:10:20 +02:00
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
2023-05-21 05:10:20 +02:00
)
2023-08-12 19:05:58 +02:00
2023-05-21 05:10:20 +02:00
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
2023-05-21 05:10:20 +02:00
)
infos.append(
"成功构建索引added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
2023-05-21 05:10:20 +02:00
)
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
2023-05-21 05:10:20 +02:00
):
infos = []
def get_info_str(strr):
infos.append(strr)
return "\n".join(infos)
2023-08-28 16:56:39 +02:00
####### step1:处理数据
2023-05-21 05:10:20 +02:00
yield get_info_str(i18n("step1:正在处理数据"))
2023-08-28 16:56:39 +02:00
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
2023-05-21 05:10:20 +02:00
2023-08-28 16:56:39 +02:00
####### step2a:提取音高
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
2023-08-28 16:58:50 +02:00
[
get_info_str(_)
for _ in extract_f0_feature(
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
)
]
2023-08-28 16:56:39 +02:00
####### step3a:训练模型
yield get_info_str(i18n("step3a:正在训练模型"))
2023-08-28 16:58:50 +02:00
click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
)
2023-08-28 16:56:39 +02:00
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
2023-08-28 16:56:39 +02:00
####### step3b:训练索引
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
2023-05-21 05:10:20 +02:00
yield get_info_str(i18n("全流程结束!"))
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
2023-05-21 05:10:20 +02:00
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
try:
with open(
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
) as f:
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
sr, f0 = info["sample_rate"], info["if_f0"]
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
return sr, str(f0), version
except:
traceback.print_exc()
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
2023-08-12 19:05:58 +02:00
F0GPUVisible = config.dml == False
2023-07-26 13:50:50 +02:00
def change_f0_method(f0method8):
if f0method8 == "rmvpe_gpu":
2023-08-12 19:05:58 +02:00
visible = F0GPUVisible
else:
visible = False
2023-07-26 13:50:50 +02:00
return {"visible": visible, "__type__": "update"}
2023-05-21 05:10:20 +02:00
2023-07-22 19:23:47 +02:00
with gr.Blocks(title="RVC WebUI") as app:
2023-05-21 05:10:20 +02:00
gr.Markdown(
value=i18n(
2023-06-24 09:26:14 +02:00
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
2023-05-21 05:10:20 +02:00
)
)
with gr.Tabs():
with gr.TabItem(i18n("模型推理")):
with gr.Row():
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
clean_button.click(
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
)
2023-05-21 05:10:20 +02:00
with gr.Group():
gr.Markdown(
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
)
with gr.Row():
with gr.Column():
vc_transform0 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
input_audio0 = gr.Textbox(
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
)
f0method0 = gr.Radio(
label=i18n(
2023-07-26 13:50:50 +02:00
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
2023-05-21 05:10:20 +02:00
value="pm",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
)
file_index2 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[sid0, file_index2],
api_name="infer_refresh",
2023-05-21 05:10:20 +02:00
)
# file_big_npy1 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.75,
2023-05-21 05:10:20 +02:00
interactive=True,
)
2023-05-28 16:58:33 +02:00
with gr.Column():
2023-05-21 05:10:20 +02:00
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络"),
value=0.25,
2023-05-21 05:10:20 +02:00
interactive=True,
)
2023-05-28 16:58:33 +02:00
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
2023-05-28 16:58:33 +02:00
value=0.33,
step=0.01,
interactive=True,
)
2023-05-21 05:10:20 +02:00
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary")
2023-05-28 16:58:33 +02:00
with gr.Row():
2023-05-21 05:10:20 +02:00
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
but0.click(
2023-08-19 15:47:10 +02:00
vc.vc_single,
2023-05-21 05:10:20 +02:00
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
# file_big_npy1,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
2023-05-21 05:10:20 +02:00
],
[vc_output1, vc_output2],
2023-07-28 04:46:09 +02:00
api_name="infer_convert",
2023-05-21 05:10:20 +02:00
)
with gr.Group():
gr.Markdown(
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
)
with gr.Row():
with gr.Column():
vc_transform1 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
f0method1 = gr.Radio(
label=i18n(
2023-07-26 13:50:50 +02:00
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
),
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
2023-05-21 05:10:20 +02:00
value="pm",
interactive=True,
)
filter_radius1 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
with gr.Column():
file_index3 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
)
file_index4 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
refresh_button.click(
fn=lambda: change_choices()[1],
inputs=[],
outputs=file_index4,
2023-07-28 04:46:09 +02:00
api_name="infer_refresh_batch",
)
2023-05-21 05:10:20 +02:00
# file_big_npy2 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=1,
interactive=True,
)
2023-05-28 16:58:33 +02:00
with gr.Column():
2023-05-21 05:10:20 +02:00
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络"),
value=1,
interactive=True,
)
2023-05-28 16:58:33 +02:00
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
2023-05-28 16:58:33 +02:00
value=0.33,
step=0.01,
interactive=True,
)
2023-05-21 05:10:20 +02:00
with gr.Column():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
value="E:\codes\py39\\test-20230416b\\todo-songs",
)
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
2023-05-28 16:58:33 +02:00
with gr.Row():
format1 = gr.Radio(
2023-05-28 17:40:54 +02:00
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
2023-05-28 17:40:54 +02:00
value="flac",
interactive=True,
)
2023-05-28 16:58:33 +02:00
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
2023-05-21 05:10:20 +02:00
but1.click(
2023-08-19 15:47:10 +02:00
vc.vc_multi,
2023-05-21 05:10:20 +02:00
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index3,
file_index4,
# file_big_npy2,
index_rate2,
filter_radius1,
resample_sr1,
rms_mix_rate1,
2023-05-28 17:40:54 +02:00
protect1,
format1,
2023-05-21 05:10:20 +02:00
],
[vc_output3],
2023-07-28 04:46:09 +02:00
api_name="infer_convert_batch",
2023-05-21 05:10:20 +02:00
)
sid0.change(
2023-08-19 15:47:10 +02:00
fn=vc.get_vc,
inputs=[sid0, protect0, protect1],
2023-08-12 19:05:58 +02:00
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
api_name="infer_change_voice",
)
2023-05-28 16:58:33 +02:00
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
2023-05-21 05:10:20 +02:00
with gr.Group():
gr.Markdown(
value=i18n(
2023-06-23 15:59:37 +02:00
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
2023-05-21 05:10:20 +02:00
)
)
with gr.Row():
with gr.Column():
dir_wav_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径"),
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs",
)
wav_inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
with gr.Column():
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
agg = gr.Slider(
minimum=0,
maximum=20,
step=1,
label="人声提取激进程度",
value=10,
interactive=True,
visible=False, # 先不开放调整
)
opt_vocal_root = gr.Textbox(
2023-05-28 17:40:54 +02:00
label=i18n("指定输出主人声文件夹"), value="opt"
)
opt_ins_root = gr.Textbox(
label=i18n("指定输出非主人声文件夹"), value="opt"
)
format0 = gr.Radio(
2023-05-28 17:40:54 +02:00
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
2023-05-28 17:40:54 +02:00
value="flac",
interactive=True,
2023-05-21 05:10:20 +02:00
)
but2 = gr.Button(i18n("转换"), variant="primary")
vc_output4 = gr.Textbox(label=i18n("输出信息"))
but2.click(
uvr,
[
model_choose,
dir_wav_input,
opt_vocal_root,
wav_inputs,
opt_ins_root,
agg,
format0,
2023-05-21 05:10:20 +02:00
],
[vc_output4],
2023-07-28 04:46:09 +02:00
api_name="uvr_convert",
2023-05-21 05:10:20 +02:00
)
with gr.TabItem(i18n("训练")):
gr.Markdown(
value=i18n(
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
)
)
with gr.Row():
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
sr2 = gr.Radio(
label=i18n("目标采样率"),
2023-05-28 16:58:33 +02:00
choices=["40k", "48k"],
2023-05-21 05:10:20 +02:00
value="40k",
interactive=True,
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=[True, False],
value=True,
interactive=True,
)
version19 = gr.Radio(
2023-06-18 11:40:07 +02:00
label=i18n("版本"),
2023-05-21 05:10:20 +02:00
choices=["v1", "v2"],
2023-07-26 13:50:50 +02:00
value="v2",
2023-05-21 05:10:20 +02:00
interactive=True,
visible=True,
)
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label=i18n("提取音高和处理数据使用的CPU进程数"),
value=int(np.ceil(config.n_cpu / 1.5)),
2023-05-21 05:10:20 +02:00
interactive=True,
)
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
gr.Markdown(
value=i18n(
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
)
)
with gr.Row():
trainset_dir4 = gr.Textbox(
label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src"
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("请指定说话人id"),
value=0,
interactive=True,
)
but1 = gr.Button(i18n("处理数据"), variant="primary")
info1 = gr.Textbox(label=i18n("输出信息"), value="")
but1.click(
preprocess_dataset,
[trainset_dir4, exp_dir1, sr2, np7],
[info1],
api_name="train_preprocess",
2023-05-21 05:10:20 +02:00
)
with gr.Group():
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
with gr.Row():
with gr.Column():
gpus6 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
visible=F0GPUVisible,
)
gpu_info9 = gr.Textbox(
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
2023-05-21 05:10:20 +02:00
)
with gr.Column():
f0method8 = gr.Radio(
label=i18n(
2023-08-12 19:05:58 +02:00
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
2023-05-21 05:10:20 +02:00
),
2023-07-26 13:50:50 +02:00
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
value="rmvpe_gpu",
interactive=True,
)
gpus_rmvpe = gr.Textbox(
label=i18n(
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
),
value="%s-%s" % (gpus, gpus),
2023-05-21 05:10:20 +02:00
interactive=True,
2023-08-12 19:05:58 +02:00
visible=F0GPUVisible,
2023-05-21 05:10:20 +02:00
)
but2 = gr.Button(i18n("特征提取"), variant="primary")
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
2023-07-26 13:50:50 +02:00
f0method8.change(
fn=change_f0_method,
inputs=[f0method8],
outputs=[gpus_rmvpe],
)
2023-05-21 05:10:20 +02:00
but2.click(
extract_f0_feature,
[
gpus6,
np7,
f0method8,
if_f0_3,
exp_dir1,
version19,
gpus_rmvpe,
],
2023-05-21 05:10:20 +02:00
[info2],
2023-07-28 04:46:09 +02:00
api_name="train_extract_f0_feature",
2023-05-21 05:10:20 +02:00
)
with gr.Group():
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
with gr.Row():
save_epoch10 = gr.Slider(
2023-08-13 05:46:12 +02:00
minimum=1,
2023-05-21 05:10:20 +02:00
maximum=50,
step=1,
label=i18n("保存频率save_every_epoch"),
value=5,
interactive=True,
)
total_epoch11 = gr.Slider(
2023-08-13 05:46:12 +02:00
minimum=2,
2023-05-21 05:10:20 +02:00
maximum=1000,
step=1,
label=i18n("总训练轮数total_epoch"),
value=20,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label=i18n("每张显卡的batch_size"),
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
if_cache_gpu17 = gr.Radio(
label=i18n(
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
),
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
if_save_every_weights18 = gr.Radio(
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
with gr.Row():
pretrained_G14 = gr.Textbox(
label=i18n("加载预训练底模G路径"),
2023-08-21 13:53:11 +02:00
value="assets/pretrained_v2/f0G40k.pth",
2023-05-21 05:10:20 +02:00
interactive=True,
)
pretrained_D15 = gr.Textbox(
label=i18n("加载预训练底模D路径"),
2023-08-21 13:53:11 +02:00
value="assets/pretrained_v2/f0D40k.pth",
2023-05-21 05:10:20 +02:00
interactive=True,
)
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
2023-06-18 15:49:49 +02:00
[pretrained_G14, pretrained_D15],
2023-05-21 05:10:20 +02:00
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, sr2],
2023-05-21 05:10:20 +02:00
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2, version19],
[f0method8, pretrained_G14, pretrained_D15],
)
gpus16 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
)
but3 = gr.Button(i18n("训练模型"), variant="primary")
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
but5 = gr.Button(i18n("一键训练"), variant="primary")
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
info3,
2023-07-28 04:46:09 +02:00
api_name="train_start",
2023-05-21 05:10:20 +02:00
)
2023-08-20 05:37:59 +02:00
but4.click(train_index, [exp_dir1, version19], info3)
2023-05-21 05:10:20 +02:00
but5.click(
train1key,
[
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
2023-05-21 05:10:20 +02:00
],
info3,
2023-07-28 04:46:09 +02:00
api_name="train_start_all",
2023-05-21 05:10:20 +02:00
)
with gr.TabItem(i18n("ckpt处理")):
with gr.Group():
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
with gr.Row():
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True)
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True)
alpha_a = gr.Slider(
minimum=0,
maximum=1,
label=i18n("A模型权重"),
value=0.5,
interactive=True,
)
with gr.Row():
sr_ = gr.Radio(
label=i18n("目标采样率"),
2023-06-18 11:40:07 +02:00
choices=["40k", "48k"],
2023-05-21 05:10:20 +02:00
value="40k",
interactive=True,
)
if_f0_ = gr.Radio(
label=i18n("模型是否带音高指导"),
choices=[i18n(""), i18n("")],
value=i18n(""),
interactive=True,
)
info__ = gr.Textbox(
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
)
name_to_save0 = gr.Textbox(
label=i18n("保存的模型名不带后缀"),
value="",
max_lines=1,
interactive=True,
)
version_2 = gr.Radio(
label=i18n("模型版本型号"),
choices=["v1", "v2"],
value="v1",
interactive=True,
)
with gr.Row():
but6 = gr.Button(i18n("融合"), variant="primary")
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but6.click(
merge,
[
ckpt_a,
ckpt_b,
alpha_a,
sr_,
if_f0_,
info__,
name_to_save0,
version_2,
],
info4,
2023-07-28 04:46:09 +02:00
api_name="ckpt_merge",
2023-05-21 05:10:20 +02:00
) # def merge(path1,path2,alpha1,sr,f0,info):
with gr.Group():
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
with gr.Row():
ckpt_path0 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
info_ = gr.Textbox(
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True
)
name_to_save1 = gr.Textbox(
label=i18n("保存的文件名, 默认空为和源文件同名"),
value="",
max_lines=8,
interactive=True,
)
with gr.Row():
but7 = gr.Button(i18n("修改"), variant="primary")
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but7.click(
change_info,
[ckpt_path0, info_, name_to_save1],
info5,
api_name="ckpt_modify",
)
2023-05-21 05:10:20 +02:00
with gr.Group():
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
with gr.Row():
ckpt_path1 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
but8 = gr.Button(i18n("查看"), variant="primary")
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
2023-07-28 04:46:09 +02:00
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
2023-05-21 05:10:20 +02:00
with gr.Group():
gr.Markdown(
value=i18n(
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
)
)
with gr.Row():
ckpt_path2 = gr.Textbox(
label=i18n("模型路径"),
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
interactive=True,
)
save_name = gr.Textbox(
label=i18n("保存名"), value="", interactive=True
)
sr__ = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
if_f0__ = gr.Radio(
label=i18n("模型是否带音高指导,1是0否"),
choices=["1", "0"],
value="1",
interactive=True,
)
version_1 = gr.Radio(
label=i18n("模型版本型号"),
choices=["v1", "v2"],
value="v2",
2023-05-21 05:10:20 +02:00
interactive=True,
)
info___ = gr.Textbox(
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
)
but9 = gr.Button(i18n("提取"), variant="primary")
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
ckpt_path2.change(
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
)
but9.click(
extract_small_model,
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
info7,
2023-07-28 04:46:09 +02:00
api_name="ckpt_extract",
2023-05-21 05:10:20 +02:00
)
2023-05-21 05:10:20 +02:00
with gr.TabItem(i18n("Onnx导出")):
with gr.Row():
ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True)
with gr.Row():
onnx_dir = gr.Textbox(
label=i18n("Onnx输出路径"), value="", interactive=True
)
with gr.Row():
2023-06-15 17:26:57 +02:00
infoOnnx = gr.Label(label="info")
2023-05-21 05:10:20 +02:00
with gr.Row():
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
butOnnx.click(
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
)
2023-05-21 05:10:20 +02:00
tab_faq = i18n("常见问题解答")
with gr.TabItem(tab_faq):
try:
if tab_faq == "常见问题解答":
2023-08-30 11:43:06 +02:00
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
2023-05-21 05:10:20 +02:00
info = f.read()
else:
2023-08-30 11:43:06 +02:00
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
2023-05-21 05:10:20 +02:00
info = f.read()
gr.Markdown(value=info)
except:
gr.Markdown(traceback.format_exc())
if config.iscolab:
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
else:
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
)